1
0

Merge with git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git

This commit is contained in:
Adrian Bunk
2006-03-20 18:30:36 +01:00
1536 changed files with 23443 additions and 17480 deletions

View File

@@ -120,7 +120,6 @@ D: Author of lil (Linux Interrupt Latency benchmark)
D: Fixed the shm swap deallocation at swapoff time (try_to_unuse message)
D: VM hacker
D: Various other kernel hacks
S: Via Cicalini 26
S: Imola 40026
S: Italy
@@ -3101,7 +3100,7 @@ S: Minto, NSW, 2566
S: Australia
N: Stephen Smalley
E: sds@epoch.ncsc.mil
E: sds@tycho.nsa.gov
D: portions of the Linux Security Module (LSM) framework and security modules
N: Chris Smith
@@ -3643,11 +3642,9 @@ S: Cambridge. CB1 7EG
S: England
N: Chris Wright
E: chrisw@osdl.org
E: chrisw@sous-sol.org
D: hacking on LSM framework and security modules.
S: c/o OSDL
S: 12725 SW Millikan Way, Suite 400
S: Beaverton, OR 97005
S: Portland, OR
S: USA
N: Michal Wronski

View File

@@ -11,6 +11,8 @@
Joel Schopp <jschopp@austin.ibm.com>
ia64/x86_64:
Ashok Raj <ashok.raj@intel.com>
s390:
Heiko Carstens <heiko.carstens@de.ibm.com>
Authors: Ashok Raj <ashok.raj@intel.com>
Lots of feedback: Nathan Lynch <nathanl@austin.ibm.com>,
@@ -44,9 +46,28 @@ maxcpus=n Restrict boot time cpus to n. Say if you have 4 cpus, using
maxcpus=2 will only boot 2. You can choose to bring the
other cpus later online, read FAQ's for more info.
additional_cpus=n [x86_64 only] use this to limit hotpluggable cpus.
This option sets
cpu_possible_map = cpu_present_map + additional_cpus
additional_cpus*=n Use this to limit hotpluggable cpus. This option sets
cpu_possible_map = cpu_present_map + additional_cpus
(*) Option valid only for following architectures
- x86_64, ia64, s390
ia64 and x86_64 use the number of disabled local apics in ACPI tables MADT
to determine the number of potentially hot-pluggable cpus. The implementation
should only rely on this to count the #of cpus, but *MUST* not rely on the
apicid values in those tables for disabled apics. In the event BIOS doesnt
mark such hot-pluggable cpus as disabled entries, one could use this
parameter "additional_cpus=x" to represent those cpus in the cpu_possible_map.
s390 uses the number of cpus it detects at IPL time to also the number of bits
in cpu_possible_map. If it is desired to add additional cpus at a later time
the number should be specified using this option or the possible_cpus option.
possible_cpus=n [s390 only] use this to set hotpluggable cpus.
This option sets possible_cpus bits in
cpu_possible_map. Thus keeping the numbers of bits set
constant even if the machine gets rebooted.
This option overrides additional_cpus.
CPU maps and such
-----------------

View File

@@ -4,8 +4,9 @@
Copyright (C) 2004 BULL SA.
Written by Simon.Derr@bull.net
Portions Copyright (c) 2004 Silicon Graphics, Inc.
Portions Copyright (c) 2004-2006 Silicon Graphics, Inc.
Modified by Paul Jackson <pj@sgi.com>
Modified by Christoph Lameter <clameter@sgi.com>
CONTENTS:
=========
@@ -90,7 +91,8 @@ This can be especially valuable on:
These subsets, or "soft partitions" must be able to be dynamically
adjusted, as the job mix changes, without impacting other concurrently
executing jobs.
executing jobs. The location of the running jobs pages may also be moved
when the memory locations are changed.
The kernel cpuset patch provides the minimum essential kernel
mechanisms required to efficiently implement such subsets. It
@@ -102,8 +104,8 @@ memory allocator code.
1.3 How are cpusets implemented ?
---------------------------------
Cpusets provide a Linux kernel (2.6.7 and above) mechanism to constrain
which CPUs and Memory Nodes are used by a process or set of processes.
Cpusets provide a Linux kernel mechanism to constrain which CPUs and
Memory Nodes are used by a process or set of processes.
The Linux kernel already has a pair of mechanisms to specify on which
CPUs a task may be scheduled (sched_setaffinity) and on which Memory
@@ -371,22 +373,17 @@ cpusets memory placement policy 'mems' subsequently changes.
If the cpuset flag file 'memory_migrate' is set true, then when
tasks are attached to that cpuset, any pages that task had
allocated to it on nodes in its previous cpuset are migrated
to the tasks new cpuset. Depending on the implementation,
this migration may either be done by swapping the page out,
so that the next time the page is referenced, it will be paged
into the tasks new cpuset, usually on the node where it was
referenced, or this migration may be done by directly copying
the pages from the tasks previous cpuset to the new cpuset,
where possible to the same node, relative to the new cpuset,
as the node that held the page, relative to the old cpuset.
to the tasks new cpuset. The relative placement of the page within
the cpuset is preserved during these migration operations if possible.
For example if the page was on the second valid node of the prior cpuset
then the page will be placed on the second valid node of the new cpuset.
Also if 'memory_migrate' is set true, then if that cpusets
'mems' file is modified, pages allocated to tasks in that
cpuset, that were on nodes in the previous setting of 'mems',
will be moved to nodes in the new setting of 'mems.' Again,
depending on the implementation, this might be done by swapping,
or by direct copying. In either case, pages that were not in
the tasks prior cpuset, or in the cpusets prior 'mems' setting,
will not be moved.
will be moved to nodes in the new setting of 'mems.'
Pages that were not in the tasks prior cpuset, or in the cpusets
prior 'mems' setting, will not be moved.
There is an exception to the above. If hotplug functionality is used
to remove all the CPUs that are currently assigned to a cpuset,
@@ -434,16 +431,6 @@ and then start a subshell 'sh' in that cpuset:
# The next line should display '/Charlie'
cat /proc/self/cpuset
In the case that a change of cpuset includes wanting to move already
allocated memory pages, consider further the work of IWAMOTO
Toshihiro <iwamoto@valinux.co.jp> for page remapping and memory
hotremoval, which can be found at:
http://people.valinux.co.jp/~iwamoto/mh.html
The integration of cpusets with such memory migration is not yet
available.
In the future, a C library interface to cpusets will likely be
available. For now, the only way to query or modify cpusets is
via the cpuset file system, using the various cd, mkdir, echo, cat,

View File

@@ -111,4 +111,8 @@ source: linux/Documentation/video4linux/CARDLIST.bttv
If you have problems with this please do ask on the mailing list.
--
Authors: Richard Walker, Jamie Honan, Michael Hunold, Manu Abraham
Authors: Richard Walker,
Jamie Honan,
Michael Hunold,
Manu Abraham,
Michael Krufky

View File

@@ -162,3 +162,30 @@ What: pci_module_init(driver)
When: January 2007
Why: Is replaced by pci_register_driver(pci_driver).
Who: Richard Knutsson <ricknu-0@student.ltu.se> and Greg Kroah-Hartman <gregkh@suse.de>
---------------------------
What: I2C interface of the it87 driver
When: January 2007
Why: The ISA interface is faster and should be always available. The I2C
probing is also known to cause trouble in at least one case (see
bug #5889.)
Who: Jean Delvare <khali@linux-fr.org>
---------------------------
What: mount/umount uevents
When: February 2007
Why: These events are not correct, and do not properly let userspace know
when a file system has been mounted or unmounted. Userspace should
poll the /proc/mounts file instead to detect this properly.
Who: Greg Kroah-Hartman <gregkh@suse.de>
---------------------------
What: Support for NEC DDB5074 and DDB5476 evaluation boards.
When: June 2006
Why: Board specific code doesn't build anymore since ~2.6.0 and no
users have complained indicating there is no more need for these
boards. This should really be considered a last call.
Who: Ralf Baechle <ralf@linux-mips.org>

View File

@@ -320,6 +320,7 @@ static struct config_item_type simple_children_type = {
.ct_item_ops = &simple_children_item_ops,
.ct_group_ops = &simple_children_group_ops,
.ct_attrs = simple_children_attrs,
.ct_owner = THIS_MODULE,
};
static struct configfs_subsystem simple_children_subsys = {
@@ -403,6 +404,7 @@ static struct config_item_type group_children_type = {
.ct_item_ops = &group_children_item_ops,
.ct_group_ops = &group_children_group_ops,
.ct_attrs = group_children_attrs,
.ct_owner = THIS_MODULE,
};
static struct configfs_subsystem group_children_subsys = {

View File

@@ -457,6 +457,12 @@ ChangeLog
Note, a technical ChangeLog aimed at kernel hackers is in fs/ntfs/ChangeLog.
2.1.26:
- Implement support for sector sizes above 512 bytes (up to the maximum
supported by NTFS which is 4096 bytes).
- Enhance support for NTFS volumes which were supported by Windows but
not by Linux due to invalid attribute list attribute flags.
- A few minor updates and bug fixes.
2.1.25:
- Write support is now extended with write(2) being able to both
overwrite existing file data and to extend files. Also, if a write

View File

@@ -35,6 +35,7 @@ Features which OCFS2 does not support yet:
be cluster coherent.
- quotas
- cluster aware flock
- cluster aware lockf
- Directory change notification (F_NOTIFY)
- Distributed Caching (F_SETLEASE/F_GETLEASE/break_lease)
- POSIX ACLs

View File

@@ -79,15 +79,27 @@ that instance in a system with many cpus making intensive use of it.
tmpfs has a mount option to set the NUMA memory allocation policy for
all files in that instance:
mpol=interleave prefers to allocate memory from each node in turn
mpol=default prefers to allocate memory from the local node
mpol=bind prefers to allocate from mpol_nodelist
mpol=preferred prefers to allocate from first node in mpol_nodelist
all files in that instance (if CONFIG_NUMA is enabled) - which can be
adjusted on the fly via 'mount -o remount ...'
The following mount option is used in conjunction with mpol=interleave,
mpol=bind or mpol=preferred:
mpol_nodelist: nodelist suitable for parsing with nodelist_parse.
mpol=default prefers to allocate memory from the local node
mpol=prefer:Node prefers to allocate memory from the given Node
mpol=bind:NodeList allocates memory only from nodes in NodeList
mpol=interleave prefers to allocate from each node in turn
mpol=interleave:NodeList allocates from each node of NodeList in turn
NodeList format is a comma-separated list of decimal numbers and ranges,
a range being two hyphen-separated decimal numbers, the smallest and
largest node numbers in the range. For example, mpol=bind:0-3,5,7,9-15
Note that trying to mount a tmpfs with an mpol option will fail if the
running kernel does not support NUMA; and will fail if its nodelist
specifies a node >= MAX_NUMNODES. If your system relies on that tmpfs
being mounted, but from time to time runs a kernel built without NUMA
capability (perhaps a safe recovery kernel), or configured to support
fewer nodes, then it is advisable to omit the mpol option from automatic
mount options. It can be added later, when the tmpfs is already mounted
on MountPoint, by 'mount -o remount,mpol=Policy:NodeList MountPoint'.
To specify the initial root directory you can use the following mount
@@ -109,4 +121,4 @@ RAM/SWAP in 10240 inodes and it is only accessible by root.
Author:
Christoph Rohland <cr@sap.com>, 1.12.01
Updated:
Hugh Dickins <hugh@veritas.com>, 13 March 2005
Hugh Dickins <hugh@veritas.com>, 19 February 2006

View File

@@ -57,8 +57,6 @@ OPTIONS
port=n port to connect to on the remote server
timeout=n request timeouts (in ms) (default 60000ms)
noextend force legacy mode (no 9P2000.u semantics)
uid attempt to mount as a particular uid
@@ -74,10 +72,16 @@ OPTIONS
RESOURCES
=========
The Linux version of the 9P server, along with some client-side utilities
can be found at http://v9fs.sf.net (along with a CVS repository of the
development branch of this module). There are user and developer mailing
lists here, as well as a bug-tracker.
The Linux version of the 9P server is now maintained under the npfs project
on sourceforge (http://sourceforge.net/projects/npfs).
There are user and developer mailing lists available through the v9fs project
on sourceforge (http://sourceforge.net/projects/v9fs).
News and other information is maintained on SWiK (http://swik.net/v9fs).
Bug reports may be issued through the kernel.org bugzilla
(http://bugzilla.kernel.org)
For more information on the Plan 9 Operating System check out
http://plan9.bell-labs.com/plan9

View File

@@ -0,0 +1,234 @@
=================================
INTERNAL KERNEL ABI FOR FR-V ARCH
=================================
The internal FRV kernel ABI is not quite the same as the userspace ABI. A number of the registers
are used for special purposed, and the ABI is not consistent between modules vs core, and MMU vs
no-MMU.
This partly stems from the fact that FRV CPUs do not have a separate supervisor stack pointer, and
most of them do not have any scratch registers, thus requiring at least one general purpose
register to be clobbered in such an event. Also, within the kernel core, it is possible to simply
jump or call directly between functions using a relative offset. This cannot be extended to modules
for the displacement is likely to be too far. Thus in modules the address of a function to call
must be calculated in a register and then used, requiring two extra instructions.
This document has the following sections:
(*) System call register ABI
(*) CPU operating modes
(*) Internal kernel-mode register ABI
(*) Internal debug-mode register ABI
(*) Virtual interrupt handling
========================
SYSTEM CALL REGISTER ABI
========================
When a system call is made, the following registers are effective:
REGISTERS CALL RETURN
=============== ======================= =======================
GR7 System call number Preserved
GR8 Syscall arg #1 Return value
GR9-GR13 Syscall arg #2-6 Preserved
===================
CPU OPERATING MODES
===================
The FR-V CPU has three basic operating modes. In order of increasing capability:
(1) User mode.
Basic userspace running mode.
(2) Kernel mode.
Normal kernel mode. There are many additional control registers available that may be
accessed in this mode, in addition to all the stuff available to user mode. This has two
submodes:
(a) Exceptions enabled (PSR.T == 1).
Exceptions will invoke the appropriate normal kernel mode handler. On entry to the
handler, the PSR.T bit will be cleared.
(b) Exceptions disabled (PSR.T == 0).
No exceptions or interrupts may happen. Any mandatory exceptions will cause the CPU to
halt unless the CPU is told to jump into debug mode instead.
(3) Debug mode.
No exceptions may happen in this mode. Memory protection and management exceptions will be
flagged for later consideration, but the exception handler won't be invoked. Debugging traps
such as hardware breakpoints and watchpoints will be ignored. This mode is entered only by
debugging events obtained from the other two modes.
All kernel mode registers may be accessed, plus a few extra debugging specific registers.
=================================
INTERNAL KERNEL-MODE REGISTER ABI
=================================
There are a number of permanent register assignments that are set up by entry.S in the exception
prologue. Note that there is a complete set of exception prologues for each of user->kernel
transition and kernel->kernel transition. There are also user->debug and kernel->debug mode
transition prologues.
REGISTER FLAVOUR USE
=============== ======= ====================================================
GR1 Supervisor stack pointer
GR15 Current thread info pointer
GR16 GP-Rel base register for small data
GR28 Current exception frame pointer (__frame)
GR29 Current task pointer (current)
GR30 Destroyed by kernel mode entry
GR31 NOMMU Destroyed by debug mode entry
GR31 MMU Destroyed by TLB miss kernel mode entry
CCR.ICC2 Virtual interrupt disablement tracking
CCCR.CC3 Cleared by exception prologue (atomic op emulation)
SCR0 MMU See mmu-layout.txt.
SCR1 MMU See mmu-layout.txt.
SCR2 MMU Save for EAR0 (destroyed by icache insns in debug mode)
SCR3 MMU Save for GR31 during debug exceptions
DAMR/IAMR NOMMU Fixed memory protection layout.
DAMR/IAMR MMU See mmu-layout.txt.
Certain registers are also used or modified across function calls:
REGISTER CALL RETURN
=============== =============================== ===============================
GR0 Fixed Zero -
GR2 Function call frame pointer
GR3 Special Preserved
GR3-GR7 - Clobbered
GR8 Function call arg #1 Return value (or clobbered)
GR9 Function call arg #2 Return value MSW (or clobbered)
GR10-GR13 Function call arg #3-#6 Clobbered
GR14 - Clobbered
GR15-GR16 Special Preserved
GR17-GR27 - Preserved
GR28-GR31 Special Only accessed explicitly
LR Return address after CALL Clobbered
CCR/CCCR - Mostly Clobbered
================================
INTERNAL DEBUG-MODE REGISTER ABI
================================
This is the same as the kernel-mode register ABI for functions calls. The difference is that in
debug-mode there's a different stack and a different exception frame. Almost all the global
registers from kernel-mode (including the stack pointer) may be changed.
REGISTER FLAVOUR USE
=============== ======= ====================================================
GR1 Debug stack pointer
GR16 GP-Rel base register for small data
GR31 Current debug exception frame pointer (__debug_frame)
SCR3 MMU Saved value of GR31
Note that debug mode is able to interfere with the kernel's emulated atomic ops, so it must be
exceedingly careful not to do any that would interact with the main kernel in this regard. Hence
the debug mode code (gdbstub) is almost completely self-contained. The only external code used is
the sprintf family of functions.
Futhermore, break.S is so complicated because single-step mode does not switch off on entry to an
exception. That means unless manually disabled, single-stepping will blithely go on stepping into
things like interrupts. See gdbstub.txt for more information.
==========================
VIRTUAL INTERRUPT HANDLING
==========================
Because accesses to the PSR is so slow, and to disable interrupts we have to access it twice (once
to read and once to write), we don't actually disable interrupts at all if we don't have to. What
we do instead is use the ICC2 condition code flags to note virtual disablement, such that if we
then do take an interrupt, we note the flag, really disable interrupts, set another flag and resume
execution at the point the interrupt happened. Setting condition flags as a side effect of an
arithmetic or logical instruction is really fast. This use of the ICC2 only occurs within the
kernel - it does not affect userspace.
The flags we use are:
(*) CCR.ICC2.Z [Zero flag]
Set to virtually disable interrupts, clear when interrupts are virtually enabled. Can be
modified by logical instructions without affecting the Carry flag.
(*) CCR.ICC2.C [Carry flag]
Clear to indicate hardware interrupts are really disabled, set otherwise.
What happens is this:
(1) Normal kernel-mode operation.
ICC2.Z is 0, ICC2.C is 1.
(2) An interrupt occurs. The exception prologue examines ICC2.Z and determines that nothing needs
doing. This is done simply with an unlikely BEQ instruction.
(3) The interrupts are disabled (local_irq_disable)
ICC2.Z is set to 1.
(4) If interrupts were then re-enabled (local_irq_enable):
ICC2.Z would be set to 0.
A TIHI #2 instruction (trap #2 if condition HI - Z==0 && C==0) would be used to trap if
interrupts were now virtually enabled, but physically disabled - which they're not, so the
trap isn't taken. The kernel would then be back to state (1).
(5) An interrupt occurs. The exception prologue examines ICC2.Z and determines that the interrupt
shouldn't actually have happened. It jumps aside, and there disabled interrupts by setting
PSR.PIL to 14 and then it clears ICC2.C.
(6) If interrupts were then saved and disabled again (local_irq_save):
ICC2.Z would be shifted into the save variable and masked off (giving a 1).
ICC2.Z would then be set to 1 (thus unchanged), and ICC2.C would be unaffected (ie: 0).
(7) If interrupts were then restored from state (6) (local_irq_restore):
ICC2.Z would be set to indicate the result of XOR'ing the saved value (ie: 1) with 1, which
gives a result of 0 - thus leaving ICC2.Z set.
ICC2.C would remain unaffected (ie: 0).
A TIHI #2 instruction would be used to again assay the current state, but this would do
nothing as Z==1.
(8) If interrupts were then enabled (local_irq_enable):
ICC2.Z would be cleared. ICC2.C would be left unaffected. Both flags would now be 0.
A TIHI #2 instruction again issued to assay the current state would then trap as both Z==0
[interrupts virtually enabled] and C==0 [interrupts really disabled] would then be true.
(9) The trap #2 handler would simply enable hardware interrupts (set PSR.PIL to 0), set ICC2.C to
1 and return.
(10) Immediately upon returning, the pending interrupt would be taken.
(11) The interrupt handler would take the path of actually processing the interrupt (ICC2.Z is
clear, BEQ fails as per step (2)).
(12) The interrupt handler would then set ICC2.C to 1 since hardware interrupts are definitely
enabled - or else the kernel wouldn't be here.
(13) On return from the interrupt handler, things would be back to state (1).
This trap (#2) is only available in kernel mode. In user mode it will result in SIGILL.

105
Documentation/hwmon/f71805f Normal file
View File

@@ -0,0 +1,105 @@
Kernel driver f71805f
=====================
Supported chips:
* Fintek F71805F/FG
Prefix: 'f71805f'
Addresses scanned: none, address read from Super I/O config space
Datasheet: Provided by Fintek on request
Author: Jean Delvare <khali@linux-fr.org>
Thanks to Denis Kieft from Barracuda Networks for the donation of a
test system (custom Jetway K8M8MS motherboard, with CPU and RAM) and
for providing initial documentation.
Thanks to Kris Chen from Fintek for answering technical questions and
providing additional documentation.
Thanks to Chris Lin from Jetway for providing wiring schematics and
anwsering technical questions.
Description
-----------
The Fintek F71805F/FG Super I/O chip includes complete hardware monitoring
capabilities. It can monitor up to 9 voltages (counting its own power
source), 3 fans and 3 temperature sensors.
This chip also has fan controlling features, using either DC or PWM, in
three different modes (one manual, two automatic). The driver doesn't
support these features yet.
The driver assumes that no more than one chip is present, which seems
reasonable.
Voltage Monitoring
------------------
Voltages are sampled by an 8-bit ADC with a LSB of 8 mV. The supported
range is thus from 0 to 2.040 V. Voltage values outside of this range
need external resistors. An exception is in0, which is used to monitor
the chip's own power source (+3.3V), and is divided internally by a
factor 2.
The two LSB of the voltage limit registers are not used (always 0), so
you can only set the limits in steps of 32 mV (before scaling).
The wirings and resistor values suggested by Fintek are as follow:
pin expected
name use R1 R2 divider raw val.
in0 VCC VCC3.3V int. int. 2.00 1.65 V
in1 VIN1 VTT1.2V 10K - 1.00 1.20 V
in2 VIN2 VRAM 100K 100K 2.00 ~1.25 V (1)
in3 VIN3 VCHIPSET 47K 100K 1.47 2.24 V (2)
in4 VIN4 VCC5V 200K 47K 5.25 0.95 V
in5 VIN5 +12V 200K 20K 11.00 1.05 V
in6 VIN6 VCC1.5V 10K - 1.00 1.50 V
in7 VIN7 VCORE 10K - 1.00 ~1.40 V (1)
in8 VIN8 VSB5V 200K 47K 1.00 0.95 V
(1) Depends on your hardware setup.
(2) Obviously not correct, swapping R1 and R2 would make more sense.
These values can be used as hints at best, as motherboard manufacturers
are free to use a completely different setup. As a matter of fact, the
Jetway K8M8MS uses a significantly different setup. You will have to
find out documentation about your own motherboard, and edit sensors.conf
accordingly.
Each voltage measured has associated low and high limits, each of which
triggers an alarm when crossed.
Fan Monitoring
--------------
Fan rotation speeds are reported as 12-bit values from a gated clock
signal. Speeds down to 366 RPM can be measured. There is no theoretical
high limit, but values over 6000 RPM seem to cause problem. The effective
resolution is much lower than you would expect, the step between different
register values being 10 rather than 1.
The chip assumes 2 pulse-per-revolution fans.
An alarm is triggered if the rotation speed drops below a programmable
limit or is too low to be measured.
Temperature Monitoring
----------------------
Temperatures are reported in degrees Celsius. Each temperature measured
has a high limit, those crossing triggers an alarm. There is an associated
hysteresis value, below which the temperature has to drop before the
alarm is cleared.
All temperature channels are external, there is no embedded temperature
sensor. Each channel can be used for connecting either a thermal diode
or a thermistor. The driver reports the currently selected mode, but
doesn't allow changing it. In theory, the BIOS should have configured
everything properly.

View File

@@ -9,7 +9,7 @@ Supported chips:
http://www.ite.com.tw/
* IT8712F
Prefix: 'it8712'
Addresses scanned: I2C 0x28 - 0x2f
Addresses scanned: I2C 0x2d
from Super I/O config space (8 I/O ports)
Datasheet: Publicly available at the ITE website
http://www.ite.com.tw/

View File

@@ -179,11 +179,12 @@ temp[1-*]_auto_point[1-*]_temp_hyst
****************
temp[1-3]_type Sensor type selection.
Integers 1, 2, 3 or thermistor Beta value (3435)
Integers 1 to 4 or thermistor Beta value (typically 3435)
Read/Write.
1: PII/Celeron Diode
2: 3904 transistor
3: thermal diode
4: thermistor (default/unknown Beta)
Not all types are supported by all chips
temp[1-4]_max Temperature max value.
@@ -261,6 +262,21 @@ alarms Alarm bitmask.
of individual bits.
Bits are defined in kernel/include/sensors.h.
alarms_in Alarm bitmask relative to in (voltage) channels
Read only
A '1' bit means an alarm, LSB corresponds to in0 and so on
Prefered to 'alarms' for newer chips
alarms_fan Alarm bitmask relative to fan channels
Read only
A '1' bit means an alarm, LSB corresponds to fan1 and so on
Prefered to 'alarms' for newer chips
alarms_temp Alarm bitmask relative to temp (temperature) channels
Read only
A '1' bit means an alarm, LSB corresponds to temp1 and so on
Prefered to 'alarms' for newer chips
beep_enable Beep/interrupt enable
0 to disable.
1 to enable.

View File

@@ -36,6 +36,10 @@ Module Parameters
(default is 1)
Use 'init=0' to bypass initializing the chip.
Try this if your computer crashes when you load the module.
* reset: int
(default is 0)
The driver used to reset the chip on load, but does no more. Use
'reset=1' to restore the old behavior. Report if you need to do this.
Description
-----------

View File

@@ -7,7 +7,7 @@ Supported adapters:
Any combination of these host bridges:
645, 645DX (aka 646), 648, 650, 651, 655, 735, 745, 746
and these south bridges:
961, 962, 963(L)
961, 962, 963(L)
Author: Mark M. Hoffman <mhoffman@lightlink.com>
@@ -29,7 +29,7 @@ The command "lspci" as root should produce something like these lines:
or perhaps this...
00:00.0 Host bridge: Silicon Integrated Systems [SiS]: Unknown device 0645
00:00.0 Host bridge: Silicon Integrated Systems [SiS]: Unknown device 0645
00:02.0 ISA bridge: Silicon Integrated Systems [SiS]: Unknown device 0961
00:02.1 SMBus: Silicon Integrated Systems [SiS]: Unknown device 0016

View File

@@ -335,6 +335,12 @@ running once the system is up.
timesource is not avalible, it defaults to PIT.
Format: { pit | tsc | cyclone | pmtmr }
disable_8254_timer
enable_8254_timer
[IA32/X86_64] Disable/Enable interrupt 0 timer routing
over the 8254 in addition to over the IO-APIC. The
kernel tries to set a sensible default.
hpet= [IA-32,HPET] option to disable HPET and use PIT.
Format: disable
@@ -1034,6 +1040,8 @@ running once the system is up.
nomce [IA-32] Machine Check Exception
nomca [IA-64] Disable machine check abort handling
noresidual [PPC] Don't use residual data on PReP machines.
noresume [SWSUSP] Disables resume and restores original swap
@@ -1133,6 +1141,8 @@ running once the system is up.
Mechanism 1.
conf2 [IA-32] Force use of PCI Configuration
Mechanism 2.
nommconf [IA-32,X86_64] Disable use of MMCONFIG for PCI
Configuration
nosort [IA-32] Don't sort PCI devices according to
order given by the PCI BIOS. This sorting is
done to get a device order compatible with
@@ -1280,6 +1290,19 @@ running once the system is up.
New name for the ramdisk parameter.
See Documentation/ramdisk.txt.
rcu.blimit= [KNL,BOOT] Set maximum number of finished
RCU callbacks to process in one batch.
rcu.qhimark= [KNL,BOOT] Set threshold of queued
RCU callbacks over which batch limiting is disabled.
rcu.qlowmark= [KNL,BOOT] Set threshold of queued
RCU callbacks below which batch limiting is re-enabled.
rcu.rsinterval= [KNL,BOOT,SMP] Set the number of additional
RCU callbacks to queued before forcing reschedule
on all cpus.
rdinit= [KNL]
Format: <full_path>
Run specified binary instead of /init from the ramdisk,
@@ -1636,6 +1659,9 @@ running once the system is up.
Format:
<irq>,<irq_mask>,<io>,<full_duplex>,<do_sound>,<lockup_hack>[,<irq2>[,<irq3>[,<irq4>]]]
norandmaps Don't use address space randomization
Equivalent to echo 0 > /proc/sys/kernel/randomize_va_space
______________________________________________________________________
Changelog:

View File

@@ -136,17 +136,20 @@ Kprobes, jprobes, and return probes are implemented on the following
architectures:
- i386
- x86_64 (AMD-64, E64MT)
- x86_64 (AMD-64, EM64T)
- ppc64
- ia64 (Support for probes on certain instruction types is still in progress.)
- ia64 (Does not support probes on instruction slot1.)
- sparc64 (Return probes not yet implemented.)
3. Configuring Kprobes
When configuring the kernel using make menuconfig/xconfig/oldconfig,
ensure that CONFIG_KPROBES is set to "y". Under "Kernel hacking",
look for "Kprobes". You may have to enable "Kernel debugging"
(CONFIG_DEBUG_KERNEL) before you can enable Kprobes.
ensure that CONFIG_KPROBES is set to "y". Under "Instrumentation
Support", look for "Kprobes".
So that you can load and unload Kprobes-based instrumentation modules,
make sure "Loadable module support" (CONFIG_MODULES) and "Module
unloading" (CONFIG_MODULE_UNLOAD) are set to "y".
You may also want to ensure that CONFIG_KALLSYMS and perhaps even
CONFIG_KALLSYMS_ALL are set to "y", since kallsyms_lookup_name()
@@ -262,18 +265,18 @@ at any time after the probe has been registered.
5. Kprobes Features and Limitations
As of Linux v2.6.12, Kprobes allows multiple probes at the same
address. Currently, however, there cannot be multiple jprobes on
the same function at the same time.
Kprobes allows multiple probes at the same address. Currently,
however, there cannot be multiple jprobes on the same function at
the same time.
In general, you can install a probe anywhere in the kernel.
In particular, you can probe interrupt handlers. Known exceptions
are discussed in this section.
For obvious reasons, it's a bad idea to install a probe in
the code that implements Kprobes (mostly kernel/kprobes.c and
arch/*/kernel/kprobes.c). A patch in the v2.6.13 timeframe instructs
Kprobes to reject such requests.
The register_*probe functions will return -EINVAL if you attempt
to install a probe in the code that implements Kprobes (mostly
kernel/kprobes.c and arch/*/kernel/kprobes.c, but also functions such
as do_page_fault and notifier_call_chain).
If you install a probe in an inline-able function, Kprobes makes
no attempt to chase down all inline instances of the function and
@@ -290,18 +293,14 @@ from the accidental ones. Don't drink and probe.
Kprobes makes no attempt to prevent probe handlers from stepping on
each other -- e.g., probing printk() and then calling printk() from a
probe handler. As of Linux v2.6.12, if a probe handler hits a probe,
that second probe's handlers won't be run in that instance.
probe handler. If a probe handler hits a probe, that second probe's
handlers won't be run in that instance, and the kprobe.nmissed member
of the second probe will be incremented.
In Linux v2.6.12 and previous versions, Kprobes' data structures are
protected by a single lock that is held during probe registration and
unregistration and while handlers are run. Thus, no two handlers
can run simultaneously. To improve scalability on SMP systems,
this restriction will probably be removed soon, in which case
multiple handlers (or multiple instances of the same handler) may
run concurrently on different CPUs. Code your handlers accordingly.
As of Linux v2.6.15-rc1, multiple handlers (or multiple instances of
the same handler) may run concurrently on different CPUs.
Kprobes does not use semaphores or allocate memory except during
Kprobes does not use mutexes or allocate memory except during
registration and unregistration.
Probe handlers are run with preemption disabled. Depending on the
@@ -316,11 +315,18 @@ address instead of the real return address for kretprobed functions.
(As far as we can tell, __builtin_return_address() is used only
for instrumentation and error reporting.)
If the number of times a function is called does not match the
number of times it returns, registering a return probe on that
function may produce undesirable results. We have the do_exit()
and do_execve() cases covered. do_fork() is not an issue. We're
unaware of other specific cases where this could be a problem.
If the number of times a function is called does not match the number
of times it returns, registering a return probe on that function may
produce undesirable results. We have the do_exit() case covered.
do_execve() and do_fork() are not an issue. We're unaware of other
specific cases where this could be a problem.
If, upon entry to or exit from a function, the CPU is running on
a stack other than that of the current task, registering a return
probe on that function may produce undesirable results. For this
reason, Kprobes doesn't support return probes (or kprobes or jprobes)
on the x86_64 version of __switch_to(); the registration functions
return -EINVAL.
6. Probe Overhead
@@ -347,14 +353,12 @@ k = 0.77 usec; j = 1.31; r = 1.26; kr = 1.45; jr = 1.99
7. TODO
a. SystemTap (http://sourceware.org/systemtap): Work in progress
to provide a simplified programming interface for probe-based
instrumentation.
b. Improved SMP scalability: Currently, work is in progress to handle
multiple kprobes in parallel.
c. Kernel return probes for sparc64.
d. Support for other architectures.
e. User-space probes.
a. SystemTap (http://sourceware.org/systemtap): Provides a simplified
programming interface for probe-based instrumentation. Try it out.
b. Kernel return probes for sparc64.
c. Support for other architectures.
d. User-space probes.
e. Watchpoint probes (which fire on data references).
8. Kprobes Example
@@ -411,8 +415,7 @@ int init_module(void)
printk("Couldn't find %s to plant kprobe\n", "do_fork");
return -1;
}
ret = register_kprobe(&kp);
if (ret < 0) {
if ((ret = register_kprobe(&kp) < 0)) {
printk("register_kprobe failed, returned %d\n", ret);
return -1;
}

View File

@@ -95,11 +95,13 @@ CONFIG_BLK_DEV_IDEDMA_PCI=y
CONFIG_IDEDMA_PCI_AUTO=y
CONFIG_BLK_DEV_IDE_AU1XXX=y
CONFIG_BLK_DEV_IDE_AU1XXX_MDMA2_DBDMA=y
CONFIG_BLK_DEV_IDE_AU1XXX_BURSTABLE_ON=y
CONFIG_BLK_DEV_IDE_AU1XXX_SEQTS_PER_RQ=128
CONFIG_BLK_DEV_IDEDMA=y
CONFIG_IDEDMA_AUTO=y
Also define 'IDE_AU1XXX_BURSTMODE' in 'drivers/ide/mips/au1xxx-ide.c' to enable
the burst support on DBDMA controller.
If the used system need the USB support enable the following kernel configs for
high IDE to USB throughput.
@@ -115,6 +117,8 @@ CONFIG_BLK_DEV_IDE_AU1XXX_SEQTS_PER_RQ=128
CONFIG_BLK_DEV_IDEDMA=y
CONFIG_IDEDMA_AUTO=y
Also undefine 'IDE_AU1XXX_BURSTMODE' in 'drivers/ide/mips/au1xxx-ide.c' to
disable the burst support on DBDMA controller.
ADD NEW HARD DISC TO WHITE OR BLACK LIST
----------------------------------------

View File

@@ -44,7 +44,6 @@
compiler and the textural representation of
the tree that can be "compiled" by dtc.
November 21, 2005: Rev 0.5
- Additions/generalizations for 32-bit
- Changed to reflect the new arch/powerpc
@@ -880,6 +879,10 @@ address which can extend beyond that limit.
- device_type : Should be "soc"
- ranges : Should be defined as specified in 1) to describe the
translation of SOC addresses for memory mapped SOC registers.
- bus-frequency: Contains the bus frequency for the SOC node.
Typically, the value of this field is filled in by the boot
loader.
Recommended properties:
@@ -919,6 +922,7 @@ SOC.
device_type = "soc";
ranges = <00000000 e0000000 00100000>
reg = <e0000000 00003000>;
bus-frequency = <0>;
}
@@ -1170,6 +1174,8 @@ platforms are moved over to use the flattened-device-tree model.
mdio@24520 {
reg = <24520 20>;
device_type = "mdio";
compatible = "gianfar";
ethernet-phy@0 {
......
@@ -1300,6 +1306,65 @@ platforms are moved over to use the flattened-device-tree model.
};
f) Freescale SOC USB controllers
The device node for a USB controller that is part of a Freescale
SOC is as described in the document "Open Firmware Recommended
Practice : Universal Serial Bus" with the following modifications
and additions :
Required properties :
- compatible : Should be "fsl-usb2-mph" for multi port host usb
controllers, or "fsl-usb2-dr" for dual role usb controllers
- phy_type : For multi port host usb controllers, should be one of
"ulpi", or "serial". For dual role usb controllers, should be
one of "ulpi", "utmi", "utmi_wide", or "serial".
- reg : Offset and length of the register set for the device
- port0 : boolean; if defined, indicates port0 is connected for
fsl-usb2-mph compatible controllers. Either this property or
"port1" (or both) must be defined for "fsl-usb2-mph" compatible
controllers.
- port1 : boolean; if defined, indicates port1 is connected for
fsl-usb2-mph compatible controllers. Either this property or
"port0" (or both) must be defined for "fsl-usb2-mph" compatible
controllers.
Recommended properties :
- interrupts : <a b> where a is the interrupt number and b is a
field that represents an encoding of the sense and level
information for the interrupt. This should be encoded based on
the information in section 2) depending on the type of interrupt
controller you have.
- interrupt-parent : the phandle for the interrupt controller that
services interrupts for this device.
Example multi port host usb controller device node :
usb@22000 {
device_type = "usb";
compatible = "fsl-usb2-mph";
reg = <22000 1000>;
#address-cells = <1>;
#size-cells = <0>;
interrupt-parent = <700>;
interrupts = <27 1>;
phy_type = "ulpi";
port0;
port1;
};
Example dual role usb controller device node :
usb@23000 {
device_type = "usb";
compatible = "fsl-usb2-dr";
reg = <23000 1000>;
#address-cells = <1>;
#size-cells = <0>;
interrupt-parent = <700>;
interrupts = <26 1>;
phy = "ulpi";
};
More devices will be defined as this spec matures.
@@ -1317,6 +1382,7 @@ not necessary as they are usually the same as the root node.
device_type = "soc";
ranges = <00000000 e0000000 00100000>
reg = <e0000000 00003000>;
bus-frequency = <0>;
mdio@24520 {
reg = <24520 20>;

View File

@@ -1,3 +1,26 @@
1 Release Date : Wed Feb 03 14:31:44 PST 2006 - Sumant Patro <Sumant.Patro@lsil.com>
2 Current Version : 00.00.02.04
3 Older Version : 00.00.02.04
i. Support for 1078 type (ppc IOP) controller, device id : 0x60 added.
During initialization, depending on the device id, the template members
are initialized with function pointers specific to the ppc or
xscale controllers.
-Sumant Patro <Sumant.Patro@lsil.com>
1 Release Date : Fri Feb 03 14:16:25 PST 2006 - Sumant Patro
<Sumant.Patro@lsil.com>
2 Current Version : 00.00.02.04
3 Older Version : 00.00.02.02
i. Register 16 byte CDB capability with scsi midlayer
"Ths patch properly registers the 16 byte command length capability of the
megaraid_sas controlled hardware with the scsi midlayer. All megaraid_sas
hardware supports 16 byte CDB's."
-Joshua Giles <joshua_giles@dell.com>
1 Release Date : Mon Jan 23 14:09:01 PST 2006 - Sumant Patro <Sumant.Patro@lsil.com>
2 Current Version : 00.00.02.02
3 Older Version : 00.00.02.01

View File

@@ -12,13 +12,20 @@ You can make this adapter from an old printer cable and solder things
directly to the Butterfly. Or (if you have the parts and skills) you
can come up with something fancier, providing ciruit protection to the
Butterfly and the printer port, or with a better power supply than two
signal pins from the printer port.
signal pins from the printer port. Or for that matter, you can use
similar cables to talk to many AVR boards, even a breadboard.
This is more powerful than "ISP programming" cables since it lets kernel
SPI protocol drivers interact with the AVR, and could even let the AVR
issue interrupts to them. Later, your protocol driver should work
easily with a "real SPI controller", instead of this bitbanger.
The first cable connections will hook Linux up to one SPI bus, with the
AVR and a DataFlash chip; and to the AVR reset line. This is all you
need to reflash the firmware, and the pins are the standard Atmel "ISP"
connector pins (used also on non-Butterfly AVR boards).
connector pins (used also on non-Butterfly AVR boards). On the parport
side this is like "sp12" programming cables.
Signal Butterfly Parport (DB-25)
------ --------- ---------------
@@ -40,10 +47,14 @@ by clearing PORTB.[0-3]); (b) configure the mtd_dataflash driver; and
SELECT = J400.PB0/nSS = pin 17/C3,nSELECT
GND = J400.GND = pin 24/GND
The "USI" controller, using J405, can be used for a second SPI bus. That
would let you talk to the AVR over SPI, running firmware that makes it act
as an SPI slave, while letting either Linux or the AVR use the DataFlash.
There are plenty of spare parport pins to wire this one up, such as:
Or you could flash firmware making the AVR into an SPI slave (keeping the
DataFlash in reset) and tweak the spi_butterfly driver to make it bind to
the driver for your custom SPI-based protocol.
The "USI" controller, using J405, can also be used for a second SPI bus.
That would let you talk to the AVR using custom SPI-with-USI firmware,
while letting either Linux or the AVR use the DataFlash. There are plenty
of spare parport pins to wire this one up, such as:
Signal Butterfly Parport (DB-25)
------ --------- ---------------

View File

@@ -16,6 +16,7 @@ before actually making adjustments.
Currently, these files might (depending on your configuration)
show up in /proc/sys/kernel:
- acpi_video_flags
- acct
- core_pattern
- core_uses_pid
@@ -57,6 +58,15 @@ show up in /proc/sys/kernel:
==============================================================
acpi_video_flags:
flags
See Doc*/kernel/power/video.txt, it allows mode of video boot to be
set during run time.
==============================================================
acct:
highwater lowwater frequency

295
Documentation/unshare.txt Normal file
View File

@@ -0,0 +1,295 @@
unshare system call:
--------------------
This document describes the new system call, unshare. The document
provides an overview of the feature, why it is needed, how it can
be used, its interface specification, design, implementation and
how it can be tested.
Change Log:
-----------
version 0.1 Initial document, Janak Desai (janak@us.ibm.com), Jan 11, 2006
Contents:
---------
1) Overview
2) Benefits
3) Cost
4) Requirements
5) Functional Specification
6) High Level Design
7) Low Level Design
8) Test Specification
9) Future Work
1) Overview
-----------
Most legacy operating system kernels support an abstraction of threads
as multiple execution contexts within a process. These kernels provide
special resources and mechanisms to maintain these "threads". The Linux
kernel, in a clever and simple manner, does not make distinction
between processes and "threads". The kernel allows processes to share
resources and thus they can achieve legacy "threads" behavior without
requiring additional data structures and mechanisms in the kernel. The
power of implementing threads in this manner comes not only from
its simplicity but also from allowing application programmers to work
outside the confinement of all-or-nothing shared resources of legacy
threads. On Linux, at the time of thread creation using the clone system
call, applications can selectively choose which resources to share
between threads.
unshare system call adds a primitive to the Linux thread model that
allows threads to selectively 'unshare' any resources that were being
shared at the time of their creation. unshare was conceptualized by
Al Viro in the August of 2000, on the Linux-Kernel mailing list, as part
of the discussion on POSIX threads on Linux. unshare augments the
usefulness of Linux threads for applications that would like to control
shared resources without creating a new process. unshare is a natural
addition to the set of available primitives on Linux that implement
the concept of process/thread as a virtual machine.
2) Benefits
-----------
unshare would be useful to large application frameworks such as PAM
where creating a new process to control sharing/unsharing of process
resources is not possible. Since namespaces are shared by default
when creating a new process using fork or clone, unshare can benefit
even non-threaded applications if they have a need to disassociate
from default shared namespace. The following lists two use-cases
where unshare can be used.
2.1 Per-security context namespaces
-----------------------------------
unshare can be used to implement polyinstantiated directories using
the kernel's per-process namespace mechanism. Polyinstantiated directories,
such as per-user and/or per-security context instance of /tmp, /var/tmp or
per-security context instance of a user's home directory, isolate user
processes when working with these directories. Using unshare, a PAM
module can easily setup a private namespace for a user at login.
Polyinstantiated directories are required for Common Criteria certification
with Labeled System Protection Profile, however, with the availability
of shared-tree feature in the Linux kernel, even regular Linux systems
can benefit from setting up private namespaces at login and
polyinstantiating /tmp, /var/tmp and other directories deemed
appropriate by system administrators.
2.2 unsharing of virtual memory and/or open files
-------------------------------------------------
Consider a client/server application where the server is processing
client requests by creating processes that share resources such as
virtual memory and open files. Without unshare, the server has to
decide what needs to be shared at the time of creating the process
which services the request. unshare allows the server an ability to
disassociate parts of the context during the servicing of the
request. For large and complex middleware application frameworks, this
ability to unshare after the process was created can be very
useful.
3) Cost
-------
In order to not duplicate code and to handle the fact that unshare
works on an active task (as opposed to clone/fork working on a newly
allocated inactive task) unshare had to make minor reorganizational
changes to copy_* functions utilized by clone/fork system call.
There is a cost associated with altering existing, well tested and
stable code to implement a new feature that may not get exercised
extensively in the beginning. However, with proper design and code
review of the changes and creation of an unshare test for the LTP
the benefits of this new feature can exceed its cost.
4) Requirements
---------------
unshare reverses sharing that was done using clone(2) system call,
so unshare should have a similar interface as clone(2). That is,
since flags in clone(int flags, void *stack) specifies what should
be shared, similar flags in unshare(int flags) should specify
what should be unshared. Unfortunately, this may appear to invert
the meaning of the flags from the way they are used in clone(2).
However, there was no easy solution that was less confusing and that
allowed incremental context unsharing in future without an ABI change.
unshare interface should accommodate possible future addition of
new context flags without requiring a rebuild of old applications.
If and when new context flags are added, unshare design should allow
incremental unsharing of those resources on an as needed basis.
5) Functional Specification
---------------------------
NAME
unshare - disassociate parts of the process execution context
SYNOPSIS
#include <sched.h>
int unshare(int flags);
DESCRIPTION
unshare allows a process to disassociate parts of its execution
context that are currently being shared with other processes. Part
of execution context, such as the namespace, is shared by default
when a new process is created using fork(2), while other parts,
such as the virtual memory, open file descriptors, etc, may be
shared by explicit request to share them when creating a process
using clone(2).
The main use of unshare is to allow a process to control its
shared execution context without creating a new process.
The flags argument specifies one or bitwise-or'ed of several of
the following constants.
CLONE_FS
If CLONE_FS is set, file system information of the caller
is disassociated from the shared file system information.
CLONE_FILES
If CLONE_FILES is set, the file descriptor table of the
caller is disassociated from the shared file descriptor
table.
CLONE_NEWNS
If CLONE_NEWNS is set, the namespace of the caller is
disassociated from the shared namespace.
CLONE_VM
If CLONE_VM is set, the virtual memory of the caller is
disassociated from the shared virtual memory.
RETURN VALUE
On success, zero returned. On failure, -1 is returned and errno is
ERRORS
EPERM CLONE_NEWNS was specified by a non-root process (process
without CAP_SYS_ADMIN).
ENOMEM Cannot allocate sufficient memory to copy parts of caller's
context that need to be unshared.
EINVAL Invalid flag was specified as an argument.
CONFORMING TO
The unshare() call is Linux-specific and should not be used
in programs intended to be portable.
SEE ALSO
clone(2), fork(2)
6) High Level Design
--------------------
Depending on the flags argument, the unshare system call allocates
appropriate process context structures, populates it with values from
the current shared version, associates newly duplicated structures
with the current task structure and releases corresponding shared
versions. Helper functions of clone (copy_*) could not be used
directly by unshare because of the following two reasons.
1) clone operates on a newly allocated not-yet-active task
structure, where as unshare operates on the current active
task. Therefore unshare has to take appropriate task_lock()
before associating newly duplicated context structures
2) unshare has to allocate and duplicate all context structures
that are being unshared, before associating them with the
current task and releasing older shared structures. Failure
do so will create race conditions and/or oops when trying
to backout due to an error. Consider the case of unsharing
both virtual memory and namespace. After successfully unsharing
vm, if the system call encounters an error while allocating
new namespace structure, the error return code will have to
reverse the unsharing of vm. As part of the reversal the
system call will have to go back to older, shared, vm
structure, which may not exist anymore.
Therefore code from copy_* functions that allocated and duplicated
current context structure was moved into new dup_* functions. Now,
copy_* functions call dup_* functions to allocate and duplicate
appropriate context structures and then associate them with the
task structure that is being constructed. unshare system call on
the other hand performs the following:
1) Check flags to force missing, but implied, flags
2) For each context structure, call the corresponding unshare
helper function to allocate and duplicate a new context
structure, if the appropriate bit is set in the flags argument.
3) If there is no error in allocation and duplication and there
are new context structures then lock the current task structure,
associate new context structures with the current task structure,
and release the lock on the current task structure.
4) Appropriately release older, shared, context structures.
7) Low Level Design
-------------------
Implementation of unshare can be grouped in the following 4 different
items:
a) Reorganization of existing copy_* functions
b) unshare system call service function
c) unshare helper functions for each different process context
d) Registration of system call number for different architectures
7.1) Reorganization of copy_* functions
Each copy function such as copy_mm, copy_namespace, copy_files,
etc, had roughly two components. The first component allocated
and duplicated the appropriate structure and the second component
linked it to the task structure passed in as an argument to the copy
function. The first component was split into its own function.
These dup_* functions allocated and duplicated the appropriate
context structure. The reorganized copy_* functions invoked
their corresponding dup_* functions and then linked the newly
duplicated structures to the task structure with which the
copy function was called.
7.2) unshare system call service function
* Check flags
Force implied flags. If CLONE_THREAD is set force CLONE_VM.
If CLONE_VM is set, force CLONE_SIGHAND. If CLONE_SIGHAND is
set and signals are also being shared, force CLONE_THREAD. If
CLONE_NEWNS is set, force CLONE_FS.
* For each context flag, invoke the corresponding unshare_*
helper routine with flags passed into the system call and a
reference to pointer pointing the new unshared structure
* If any new structures are created by unshare_* helper
functions, take the task_lock() on the current task,
modify appropriate context pointers, and release the
task lock.
* For all newly unshared structures, release the corresponding
older, shared, structures.
7.3) unshare_* helper functions
For unshare_* helpers corresponding to CLONE_SYSVSEM, CLONE_SIGHAND,
and CLONE_THREAD, return -EINVAL since they are not implemented yet.
For others, check the flag value to see if the unsharing is
required for that structure. If it is, invoke the corresponding
dup_* function to allocate and duplicate the structure and return
a pointer to it.
7.4) Appropriately modify architecture specific code to register the
the new system call.
8) Test Specification
---------------------
The test for unshare should test the following:
1) Valid flags: Test to check that clone flags for signal and
signal handlers, for which unsharing is not implemented
yet, return -EINVAL.
2) Missing/implied flags: Test to make sure that if unsharing
namespace without specifying unsharing of filesystem, correctly
unshares both namespace and filesystem information.
3) For each of the four (namespace, filesystem, files and vm)
supported unsharing, verify that the system call correctly
unshares the appropriate structure. Verify that unsharing
them individually as well as in combination with each
other works as expected.
4) Concurrent execution: Use shared memory segments and futex on
an address in the shm segment to synchronize execution of
about 10 threads. Have a couple of threads execute execve,
a couple _exit and the rest unshare with different combination
of flags. Verify that unsharing is performed as expected and
that there are no oops or hangs.
9) Future Work
--------------
The current implementation of unshare does not allow unsharing of
signals and signal handlers. Signals are complex to begin with and
to unshare signals and/or signal handlers of a currently running
process is even more complex. If in the future there is a specific
need to allow unsharing of signals and/or signal handlers, it can
be incrementally added to unshare without affecting legacy
applications using unshare.

View File

@@ -42,4 +42,4 @@
41 -> Hauppauge WinTV-HVR1100 DVB-T/Hybrid (Low Profile) [0070:9800,0070:9802]
42 -> digitalnow DNTV Live! DVB-T Pro [1822:0025]
43 -> KWorld/VStream XPert DVB-T with cx22702 [17de:08a1]
44 -> DViCO FusionHDTV DVB-T Dual Digital [18ac:db50]
44 -> DViCO FusionHDTV DVB-T Dual Digital [18ac:db50,18ac:db54]

View File

@@ -1,7 +1,7 @@
0 -> UNKNOWN/GENERIC
1 -> Proteus Pro [philips reference design] [1131:2001,1131:2001]
2 -> LifeView FlyVIDEO3000 [5168:0138,4e42:0138]
3 -> LifeView FlyVIDEO2000 [5168:0138]
3 -> LifeView/Typhoon FlyVIDEO2000 [5168:0138,4e42:0138]
4 -> EMPRESS [1131:6752]
5 -> SKNet Monster TV [1131:4e85]
6 -> Tevion MD 9717
@@ -13,7 +13,7 @@
12 -> Medion 7134 [16be:0003]
13 -> Typhoon TV+Radio 90031
14 -> ELSA EX-VISION 300TV [1048:226b]
15 -> ELSA EX-VISION 500TV [1048:226b]
15 -> ELSA EX-VISION 500TV [1048:226a]
16 -> ASUS TV-FM 7134 [1043:4842,1043:4830,1043:4840]
17 -> AOPEN VA1000 POWER [1131:7133]
18 -> BMK MPEX No Tuner
@@ -53,12 +53,12 @@
52 -> AverMedia AverTV/305 [1461:2108]
53 -> ASUS TV-FM 7135 [1043:4845]
54 -> LifeView FlyTV Platinum FM [5168:0214,1489:0214]
55 -> LifeView FlyDVB-T DUO [5168:0502,5168:0306]
55 -> LifeView FlyDVB-T DUO [5168:0306]
56 -> Avermedia AVerTV 307 [1461:a70a]
57 -> Avermedia AVerTV GO 007 FM [1461:f31f]
58 -> ADS Tech Instant TV (saa7135) [1421:0350,1421:0351,1421:0370,1421:1370]
59 -> Kworld/Tevion V-Stream Xpert TV PVR7134
60 -> Typhoon DVB-T Duo Digital/Analog Cardbus [4e42:0502]
60 -> LifeView/Typhoon FlyDVB-T Duo Cardbus [5168:0502,4e42:0502]
61 -> Philips TOUGH DVB-T reference design [1131:2004]
62 -> Compro VideoMate TV Gold+II
63 -> Kworld Xpert TV PVR7134
@@ -75,7 +75,7 @@
74 -> LifeView FlyTV Platinum Mini2 [14c0:1212]
75 -> AVerMedia AVerTVHD MCE A180 [1461:1044]
76 -> SKNet MonsterTV Mobile [1131:4ee9]
77 -> Pinnacle PCTV 110i (saa7133) [11bd:002e]
77 -> Pinnacle PCTV 40i/50i/110i (saa7133) [11bd:002e]
78 -> ASUSTeK P7131 Dual [1043:4862]
79 -> Sedna/MuchTV PC TV Cardbus TV/Radio (ITO25 Rev:2B)
80 -> ASUS Digimatrix TV [1043:0210]

View File

@@ -12,12 +12,18 @@ is running.
Page migration allows a process to manually relocate the node on which its
pages are located through the MF_MOVE and MF_MOVE_ALL options while setting
a new memory policy. The pages of process can also be relocated
a new memory policy via mbind(). The pages of process can also be relocated
from another process using the sys_migrate_pages() function call. The
migrate_pages function call takes two sets of nodes and moves pages of a
process that are located on the from nodes to the destination nodes.
Page migration functions are provided by the numactl package by Andi Kleen
(a version later than 0.9.3 is required. Get it from
ftp://ftp.suse.com/pub/people/ak). numactl provided libnuma which
provides an interface similar to other numa functionality for page migration.
cat /proc/<pid>/numa_maps allows an easy review of where the pages of
a process are located. See also the numa_maps manpage in the numactl package.
Manual migration is very useful if for example the scheduler has relocated
Manual migration is useful if for example the scheduler has relocated
a process to a processor on a distant node. A batch scheduler or an
administrator may detect the situation and move the pages of the process
nearer to the new processor. At some point in the future we may have
@@ -25,10 +31,12 @@ some mechanism in the scheduler that will automatically move the pages.
Larger installations usually partition the system using cpusets into
sections of nodes. Paul Jackson has equipped cpusets with the ability to
move pages when a task is moved to another cpuset. This allows automatic
control over locality of a process. If a task is moved to a new cpuset
then also all its pages are moved with it so that the performance of the
process does not sink dramatically (as is the case today).
move pages when a task is moved to another cpuset (See ../cpusets.txt).
Cpusets allows the automation of process locality. If a task is moved to
a new cpuset then also all its pages are moved with it so that the
performance of the process does not sink dramatically. Also the pages
of processes in a cpuset are moved if the allowed memory nodes of a
cpuset are changed.
Page migration allows the preservation of the relative location of pages
within a group of nodes for all migration techniques which will preserve a
@@ -37,22 +45,26 @@ process. This is necessary in order to preserve the memory latencies.
Processes will run with similar performance after migration.
Page migration occurs in several steps. First a high level
description for those trying to use migrate_pages() and then
a low level description of how the low level details work.
description for those trying to use migrate_pages() from the kernel
(for userspace usage see the Andi Kleen's numactl package mentioned above)
and then a low level description of how the low level details work.
A. Use of migrate_pages()
-------------------------
A. In kernel use of migrate_pages()
-----------------------------------
1. Remove pages from the LRU.
Lists of pages to be migrated are generated by scanning over
pages and moving them into lists. This is done by
calling isolate_lru_page() or __isolate_lru_page().
calling isolate_lru_page().
Calling isolate_lru_page increases the references to the page
so that it cannot vanish under us.
so that it cannot vanish while the page migration occurs.
It also prevents the swapper or other scans to encounter
the page.
2. Generate a list of newly allocates page to move the contents
of the first list to.
2. Generate a list of newly allocates page. These pages will contain the
contents of the pages from the first list after page migration is
complete.
3. The migrate_pages() function is called which attempts
to do the migration. It returns the moved pages in the
@@ -63,13 +75,17 @@ A. Use of migrate_pages()
4. The leftover pages of various types are returned
to the LRU using putback_to_lru_pages() or otherwise
disposed of. The pages will still have the refcount as
increased by isolate_lru_pages()!
increased by isolate_lru_pages() if putback_to_lru_pages() is not
used! The kernel may want to handle the various cases of failures in
different ways.
B. Operation of migrate_pages()
--------------------------------
B. How migrate_pages() works
----------------------------
migrate_pages does several passes over its list of pages. A page is moved
if all references to a page are removable at the time.
migrate_pages() does several passes over its list of pages. A page is moved
if all references to a page are removable at the time. The page has
already been removed from the LRU via isolate_lru_page() and the refcount
is increased so that the page cannot be freed while page migration occurs.
Steps:
@@ -79,36 +95,40 @@ Steps:
3. Make sure that the page has assigned swap cache entry if
it is an anonyous page. The swap cache reference is necessary
to preserve the information contain in the page table maps.
to preserve the information contain in the page table maps while
page migration occurs.
4. Prep the new page that we want to move to. It is locked
and set to not being uptodate so that all accesses to the new
page immediately lock while we are moving references.
page immediately lock while the move is in progress.
5. All the page table references to the page are either dropped (file backed)
or converted to swap references (anonymous pages). This should decrease the
reference count.
5. All the page table references to the page are either dropped (file
backed pages) or converted to swap references (anonymous pages).
This should decrease the reference count.
6. The radix tree lock is taken
6. The radix tree lock is taken. This will cause all processes trying
to reestablish a pte to block on the radix tree spinlock.
7. The refcount of the page is examined and we back out if references remain
otherwise we know that we are the only one referencing this page.
8. The radix tree is checked and if it does not contain the pointer to this
page then we back out.
page then we back out because someone else modified the mapping first.
9. The mapping is checked. If the mapping is gone then a truncate action may
be in progress and we back out.
10. The new page is prepped with some settings from the old page so that accesses
to the new page will be discovered to have the correct settings.
10. The new page is prepped with some settings from the old page so that
accesses to the new page will be discovered to have the correct settings.
11. The radix tree is changed to point to the new page.
12. The reference count of the old page is dropped because the reference has now
been removed.
12. The reference count of the old page is dropped because the radix tree
reference is gone.
13. The radix tree lock is dropped.
13. The radix tree lock is dropped. With that lookups become possible again
and other processes will move from spinning on the tree lock to sleeping on
the locked new page.
14. The page contents are copied to the new page.
@@ -119,11 +139,37 @@ Steps:
17. Queued up writeback on the new page is triggered.
18. If swap pte's were generated for the page then remove them again.
18. If swap pte's were generated for the page then replace them with real
ptes. This will reenable access for processes not blocked by the page lock.
19. The locks are dropped from the old and new page.
19. The page locks are dropped from the old and new page.
Processes waiting on the page lock can continue.
20. The new page is moved to the LRU.
20. The new page is moved to the LRU and can be scanned by the swapper
etc again.
Christoph Lameter, December 19, 2005.
TODO list
---------
- Page migration requires the use of swap handles to preserve the
information of the anonymous page table entries. This means that swap
space is reserved but never used. The maximum number of swap handles used
is determined by CHUNK_SIZE (see mm/mempolicy.c) per ongoing migration.
Reservation of pages could be avoided by having a special type of swap
handle that does not require swap space and that would only track the page
references. Something like that was proposed by Marcelo Tosatti in the
past (search for migration cache on lkml or linux-mm@kvack.org).
- Page migration unmaps ptes for file backed pages and requires page
faults to reestablish these ptes. This could be optimized by somehow
recording the references before migration and then reestablish them later.
However, there are several locking challenges that have to be overcome
before this is possible.
- Page migration generates read ptes for anonymous pages. Dirty page
faults are required to make the pages writable again. It may be possible
to generate a pte marked dirty if it is known that the page is dirty and
that this process has the only reference to that page.
Christoph Lameter, March 8, 2006.

View File

@@ -40,6 +40,22 @@ APICs
no_timer_check Don't check the IO-APIC timer. This can work around
problems with incorrect timer initialization on some boards.
apicmaintimer Run time keeping from the local APIC timer instead
of using the PIT/HPET interrupt for this. This is useful
when the PIT/HPET interrupts are unreliable.
noapicmaintimer Don't do time keeping using the APIC timer.
Useful when this option was auto selected, but doesn't work.
apicpmtimer
Do APIC timer calibration using the pmtimer. Implies
apicmaintimer. Useful when your PIT timer is totally
broken.
disable_8254_timer / enable_8254_timer
Enable interrupt 0 timer routing over the 8254 in addition to over
the IO-APIC. The kernel tries to set a sensible default.
Early Console
syntax: earlyprintk=vga

View File

@@ -540,7 +540,8 @@ S: Supported
BTTV VIDEO4LINUX DRIVER
P: Mauro Carvalho Chehab
M: mchehab@brturbo.com.br
M: mchehab@infradead.org
M: v4l-dvb-maintainer@linuxtv.org
L: video4linux-list@redhat.com
W: http://linuxtv.org
T: git kernel.org:/pub/scm/linux/kernel/git/mchehab/v4l-dvb.git
@@ -557,7 +558,8 @@ S: Supported
CONFIGFS
P: Joel Becker
M: Joel Becker <joel.becker@oracle.com>
M: joel.becker@oracle.com
L: linux-kernel@vger.kernel.org
S: Supported
CIRRUS LOGIC GENERIC FBDEV DRIVER
@@ -836,11 +838,11 @@ S: Maintained
DVB SUBSYSTEM AND DRIVERS
P: LinuxTV.org Project
M: linux-dvb-maintainer@linuxtv.org
M: v4l-dvb-maintainer@linuxtv.org
L: linux-dvb@linuxtv.org (subscription required)
W: http://linuxtv.org/
T: git kernel.org:/pub/scm/linux/kernel/git/mchehab/v4l-dvb.git
S: Supported
S: Maintained
EATA-DMA SCSI DRIVER
P: Michael Neuffer
@@ -928,6 +930,12 @@ M: sct@redhat.com, akpm@osdl.org, adilger@clusterfs.com
L: ext3-users@redhat.com
S: Maintained
F71805F HARDWARE MONITORING DRIVER
P: Jean Delvare
M: khali@linux-fr.org
L: lm-sensors@lm-sensors.org
S: Maintained
FARSYNC SYNCHRONOUS DRIVER
P: Kevin Curtis
M: kevin.curtis@farsite.co.uk
@@ -1623,8 +1631,8 @@ S: Supported
LINUX SECURITY MODULE (LSM) FRAMEWORK
P: Chris Wright
M: chrisw@osdl.org
L: linux-security-module@wirex.com
M: chrisw@sous-sol.org
L: linux-security-module@vger.kernel.org
W: http://lsm.immunix.org
T: git kernel.org:/pub/scm/linux/kernel/git/chrisw/lsm-2.6.git
S: Supported
@@ -1744,7 +1752,8 @@ P: Ralf Baechle
M: ralf@linux-mips.org
W: http://www.linux-mips.org/
L: linux-mips@linux-mips.org
S: Maintained
T: git www.linux-mips.org:/pub/scm/linux.git
S: Supported
MISCELLANEOUS MCA-SUPPORT
P: James Bottomley
@@ -2223,7 +2232,23 @@ P: Martin Schwidefsky
M: schwidefsky@de.ibm.com
M: linux390@de.ibm.com
L: linux-390@vm.marist.edu
W: http://oss.software.ibm.com/developerworks/opensource/linux390
W: http://www.ibm.com/developerworks/linux/linux390/
S: Supported
S390 NETWORK DRIVERS
P: Frank Pavlic
M: fpavlic@de.ibm.com
M: linux390@de.ibm.com
L: linux-390@vm.marist.edu
W: http://www.ibm.com/developerworks/linux/linux390/
S: Supported
S390 ZFCP DRIVER
P: Andreas Herrmann
M: aherrman@de.ibm.com
M: linux390@de.ibm.com
L: linux-390@vm.marist.edu
W: http://www.ibm.com/developerworks/linux/linux390/
S: Supported
SAA7146 VIDEO4LINUX-2 DRIVER
@@ -2297,7 +2322,7 @@ S: Supported
SELINUX SECURITY MODULE
P: Stephen Smalley
M: sds@epoch.ncsc.mil
M: sds@tycho.nsa.gov
P: James Morris
M: jmorris@namei.org
L: linux-kernel@vger.kernel.org (kernel issues)
@@ -2955,7 +2980,8 @@ S: Maintained
VIDEO FOR LINUX
P: Mauro Carvalho Chehab
M: mchehab@brturbo.com.br
M: mchehab@infradead.org
M: v4l-dvb-maintainer@linuxtv.org
L: video4linux-list@redhat.com
W: http://linuxtv.org
T: git kernel.org:/pub/scm/linux/kernel/git/mchehab/v4l-dvb.git

View File

@@ -1,7 +1,7 @@
VERSION = 2
PATCHLEVEL = 6
SUBLEVEL = 16
EXTRAVERSION =-rc2
EXTRAVERSION =
NAME=Sliding Snow Leopard
# *DOCUMENTATION*
@@ -106,13 +106,12 @@ KBUILD_OUTPUT := $(shell cd $(KBUILD_OUTPUT) && /bin/pwd)
$(if $(KBUILD_OUTPUT),, \
$(error output directory "$(saved-output)" does not exist))
.PHONY: $(MAKECMDGOALS) cdbuilddir
$(MAKECMDGOALS) _all: cdbuilddir
.PHONY: $(MAKECMDGOALS)
cdbuilddir:
$(filter-out _all,$(MAKECMDGOALS)) _all:
$(if $(KBUILD_VERBOSE:1=),@)$(MAKE) -C $(KBUILD_OUTPUT) \
KBUILD_SRC=$(CURDIR) \
KBUILD_EXTMOD="$(KBUILD_EXTMOD)" -f $(CURDIR)/Makefile $(MAKECMDGOALS)
KBUILD_EXTMOD="$(KBUILD_EXTMOD)" -f $(CURDIR)/Makefile $@
# Leave processing to above invocation of make
skip-makefile := 1
@@ -442,7 +441,7 @@ export KBUILD_DEFCONFIG
config %config: scripts_basic outputmakefile FORCE
$(Q)mkdir -p include/linux
$(Q)$(MAKE) $(build)=scripts/kconfig $@
$(Q)$(MAKE) .kernelrelease
$(Q)$(MAKE) -C $(srctree) KBUILD_SRC= .kernelrelease
else
# ===========================================================================
@@ -906,7 +905,7 @@ define filechk_version.h
)
endef
include/linux/version.h: $(srctree)/Makefile .config FORCE
include/linux/version.h: $(srctree)/Makefile .config .kernelrelease FORCE
$(call filechk,version.h)
# ---------------------------------------------------------------------------

View File

@@ -151,8 +151,13 @@ handle_irq(int irq, struct pt_regs * regs)
}
irq_enter();
/*
* __do_IRQ() must be called with IPL_MAX. Note that we do not
* explicitly enable interrupts afterwards - some MILO PALcode
* (namely LX164 one) seems to have severe problems with RTI
* at IPL 0.
*/
local_irq_disable();
__do_IRQ(irq, regs);
local_irq_enable();
irq_exit();
}

View File

@@ -73,9 +73,6 @@ cpumask_t cpu_online_map;
EXPORT_SYMBOL(cpu_online_map);
/* cpus reported in the hwrpb */
static unsigned long hwrpb_cpu_present_mask __initdata = 0;
int smp_num_probed; /* Internal processor count */
int smp_num_cpus = 1; /* Number that came online. */
@@ -442,7 +439,7 @@ setup_smp(void)
if ((cpu->flags & 0x1cc) == 0x1cc) {
smp_num_probed++;
/* Assume here that "whami" == index */
hwrpb_cpu_present_mask |= (1UL << i);
cpu_set(i, cpu_possible_map);
cpu->pal_revision = boot_cpu_palrev;
}
@@ -453,12 +450,12 @@ setup_smp(void)
}
} else {
smp_num_probed = 1;
hwrpb_cpu_present_mask = (1UL << boot_cpuid);
cpu_set(boot_cpuid, cpu_possible_map);
}
cpu_present_mask = cpumask_of_cpu(boot_cpuid);
printk(KERN_INFO "SMP: %d CPUs probed -- cpu_present_mask = %lx\n",
smp_num_probed, hwrpb_cpu_present_mask);
smp_num_probed, cpu_possible_map.bits[0]);
}
/*
@@ -467,8 +464,6 @@ setup_smp(void)
void __init
smp_prepare_cpus(unsigned int max_cpus)
{
int cpu_count, i;
/* Take care of some initial bookkeeping. */
memset(ipi_data, 0, sizeof(ipi_data));
@@ -486,19 +481,7 @@ smp_prepare_cpus(unsigned int max_cpus)
printk(KERN_INFO "SMP starting up secondaries.\n");
cpu_count = 1;
for (i = 0; (i < NR_CPUS) && (cpu_count < max_cpus); i++) {
if (i == boot_cpuid)
continue;
if (((hwrpb_cpu_present_mask >> i) & 1) == 0)
continue;
cpu_set(i, cpu_possible_map);
cpu_count++;
}
smp_num_cpus = cpu_count;
smp_num_cpus = smp_num_probed;
}
void __devinit

View File

@@ -10,9 +10,9 @@ config ARM
default y
help
The ARM series is a line of low-power-consumption RISC chip designs
licensed by ARM ltd and targeted at embedded applications and
licensed by ARM Ltd and targeted at embedded applications and
handhelds such as the Compaq IPAQ. ARM-based PCs are no longer
manufactured, but legacy ARM-based PC hardware remains popular in
manufactured, but legacy ARM-based PC hardware remains popular in
Europe. There is an ARM Linux project with a web page at
<http://www.arm.linux.org.uk/>.
@@ -69,57 +69,77 @@ config GENERIC_ISA_DMA
config FIQ
bool
config ARCH_MTD_XIP
bool
source "init/Kconfig"
menu "System Type"
choice
prompt "ARM system type"
default ARCH_RPC
default ARCH_VERSATILE
config ARCH_CLPS7500
bool "Cirrus-CL-PS7500FE"
select TIMER_ACORN
select ISA
help
Support for the Cirrus Logic PS7500FE system-on-a-chip.
config ARCH_CLPS711X
bool "CLPS711x/EP721x-based"
help
Support for Cirrus Logic 711x/721x based boards.
config ARCH_CO285
bool "Co-EBSA285"
select FOOTBRIDGE
select FOOTBRIDGE_ADDIN
help
Support for Intel's EBSA285 companion chip.
config ARCH_EBSA110
bool "EBSA-110"
select ISA
help
This is an evaluation board for the StrongARM processor available
from Digital. It has limited hardware on-board, including an onboard
from Digital. It has limited hardware on-board, including an
Ethernet interface, two PCMCIA sockets, two serial ports and a
parallel port.
config ARCH_FOOTBRIDGE
bool "FootBridge"
select FOOTBRIDGE
help
Support for systems based on the DC21285 companion chip
("FootBridge"), such as the Simtec CATS and the Rebel NetWinder.
config ARCH_INTEGRATOR
bool "Integrator"
select ARM_AMBA
select ICST525
help
Support for ARM's Integrator platform.
config ARCH_IOP3XX
bool "IOP3xx-based"
select PCI
help
Support for Intel's IOP3XX (XScale) family of processors.
config ARCH_IXP4XX
bool "IXP4xx-based"
select DMABOUNCE
select PCI
help
Support for Intel's IXP4XX (XScale) family of processors.
config ARCH_IXP2000
bool "IXP2400/2800-based"
select PCI
help
Support for Intel's IXP2400/2800 (XScale) family of processors.
config ARCH_L7200
bool "LinkUp-L7200"
@@ -136,6 +156,9 @@ config ARCH_L7200
config ARCH_PXA
bool "PXA2xx-based"
select ARCH_MTD_XIP
help
Support for Intel's PXA2XX processor line.
config ARCH_RPC
bool "RiscPC"
@@ -152,19 +175,25 @@ config ARCH_SA1100
bool "SA1100-based"
select ISA
select ARCH_DISCONTIGMEM_ENABLE
select ARCH_MTD_XIP
help
Support for StrongARM 11x0 based boards.
config ARCH_S3C2410
bool "Samsung S3C2410"
help
Samsung S3C2410X CPU based systems, such as the Simtec Electronics
BAST (<http://www.simtec.co.uk/products/EB110ITX/>), the IPAQ 1940 or
the Samsung SMDK2410 development board (and derviatives).
the Samsung SMDK2410 development board (and derivatives).
config ARCH_SHARK
bool "Shark"
select ISA
select ISA_DMA
select PCI
help
Support for the StrongARM based Digital DNARD machine, also known
as "Shark" (<http://www.shark-linux.de/shark.html>).
config ARCH_LH7A40X
bool "Sharp LH7A40X"
@@ -176,6 +205,8 @@ config ARCH_LH7A40X
config ARCH_OMAP
bool "TI OMAP"
help
Support for TI's OMAP platform (OMAP1 and OMAP2).
config ARCH_VERSATILE
bool "Versatile"
@@ -194,6 +225,8 @@ config ARCH_REALVIEW
config ARCH_IMX
bool "IMX"
help
Support for Motorola's i.MX family of processors (MX1, MXL).
config ARCH_H720X
bool "Hynix-HMS720x-based"
@@ -210,8 +243,8 @@ config ARCH_AAEC2000
config ARCH_AT91RM9200
bool "AT91RM9200"
help
Say Y here if you intend to run this kernel on an AT91RM9200-based
board.
Say Y here if you intend to run this kernel on an Atmel
AT91RM9200-based board.
endchoice
@@ -417,8 +450,8 @@ config AEABI
To use this you need GCC version 4.0.0 or later.
config OABI_COMPAT
bool "Allow old ABI binaries to run with this kernel"
depends on AEABI
bool "Allow old ABI binaries to run with this kernel (EXPERIMENTAL)"
depends on AEABI && EXPERIMENTAL
default y
help
This option preserves the old syscall interface along with the
@@ -766,6 +799,8 @@ source "drivers/i2c/Kconfig"
source "drivers/spi/Kconfig"
source "drivers/w1/Kconfig"
source "drivers/hwmon/Kconfig"
#source "drivers/l3/Kconfig"

View File

@@ -629,6 +629,22 @@ static int locomo_resume(struct platform_device *dev)
}
#endif
#define LCM_ALC_EN 0x8000
void frontlight_set(struct locomo *lchip, int duty, int vr, int bpwf)
{
unsigned long flags;
spin_lock_irqsave(&lchip->lock, flags);
locomo_writel(bpwf, lchip->base + LOCOMO_FRONTLIGHT + LOCOMO_ALS);
udelay(100);
locomo_writel(duty, lchip->base + LOCOMO_FRONTLIGHT + LOCOMO_ALD);
locomo_writel(bpwf | LCM_ALC_EN, lchip->base + LOCOMO_FRONTLIGHT + LOCOMO_ALS);
spin_unlock_irqrestore(&lchip->lock, flags);
}
/**
* locomo_probe - probe for a single LoCoMo chip.
* @phys_addr: physical address of device.
@@ -688,6 +704,11 @@ __locomo_probe(struct device *me, struct resource *mem, int irq)
/* FrontLight */
locomo_writel(0, lchip->base + LOCOMO_FRONTLIGHT + LOCOMO_ALS);
locomo_writel(0, lchip->base + LOCOMO_FRONTLIGHT + LOCOMO_ALD);
/* Same constants can be used for collie and poodle
(depending on CONFIG options in original sharp code)? */
frontlight_set(lchip, 163, 0, 148);
/* Longtime timer */
locomo_writel(0, lchip->base + LOCOMO_LTINT);
/* SPI */

View File

@@ -128,19 +128,27 @@ EXPORT_SYMBOL(rtc_tm_to_time);
/*
* Calculate the next alarm time given the requested alarm time mask
* and the current time.
*
* FIXME: for now, we just copy the alarm time because we're lazy (and
* is therefore buggy - setting a 10am alarm at 8pm will not result in
* the alarm triggering.)
*/
void rtc_next_alarm_time(struct rtc_time *next, struct rtc_time *now, struct rtc_time *alrm)
{
unsigned long next_time;
unsigned long now_time;
next->tm_year = now->tm_year;
next->tm_mon = now->tm_mon;
next->tm_mday = now->tm_mday;
next->tm_hour = alrm->tm_hour;
next->tm_min = alrm->tm_min;
next->tm_sec = alrm->tm_sec;
rtc_tm_to_time(now, &now_time);
rtc_tm_to_time(next, &next_time);
if (next_time < now_time) {
/* Advance one day */
next_time += 60 * 60 * 24;
rtc_time_to_tm(next_time, next);
}
}
static inline int rtc_read_time(struct rtc_ops *ops, struct rtc_time *tm)

View File

@@ -85,7 +85,6 @@ CONFIG_DEFAULT_IOSCHED="anticipatory"
# CONFIG_ARCH_CLPS711X is not set
# CONFIG_ARCH_CO285 is not set
# CONFIG_ARCH_EBSA110 is not set
# CONFIG_ARCH_CAMELOT is not set
# CONFIG_ARCH_FOOTBRIDGE is not set
# CONFIG_ARCH_INTEGRATOR is not set
# CONFIG_ARCH_IOP3XX is not set

View File

@@ -85,7 +85,6 @@ CONFIG_DEFAULT_IOSCHED="anticipatory"
# CONFIG_ARCH_CLPS711X is not set
# CONFIG_ARCH_CO285 is not set
# CONFIG_ARCH_EBSA110 is not set
# CONFIG_ARCH_CAMELOT is not set
# CONFIG_ARCH_FOOTBRIDGE is not set
# CONFIG_ARCH_INTEGRATOR is not set
# CONFIG_ARCH_IOP3XX is not set

View File

@@ -85,7 +85,6 @@ CONFIG_DEFAULT_IOSCHED="anticipatory"
# CONFIG_ARCH_CLPS711X is not set
# CONFIG_ARCH_CO285 is not set
# CONFIG_ARCH_EBSA110 is not set
# CONFIG_ARCH_CAMELOT is not set
# CONFIG_ARCH_FOOTBRIDGE is not set
# CONFIG_ARCH_INTEGRATOR is not set
# CONFIG_ARCH_IOP3XX is not set

View File

@@ -85,7 +85,6 @@ CONFIG_DEFAULT_IOSCHED="anticipatory"
# CONFIG_ARCH_CLPS711X is not set
# CONFIG_ARCH_CO285 is not set
# CONFIG_ARCH_EBSA110 is not set
# CONFIG_ARCH_CAMELOT is not set
# CONFIG_ARCH_FOOTBRIDGE is not set
# CONFIG_ARCH_INTEGRATOR is not set
# CONFIG_ARCH_IOP3XX is not set

View File

@@ -171,7 +171,7 @@ CONFIG_ALIGNMENT_TRAP=y
#
CONFIG_ZBOOT_ROM_TEXT=0x0
CONFIG_ZBOOT_ROM_BSS=0x0
CONFIG_CMDLINE="console=ttyS0,57600 root=/dev/nfs ip=bootp mem=64M@0x0 pci=firmware"
CONFIG_CMDLINE="console=ttyS0,57600 root=/dev/nfs ip=bootp mem=64M@0x0"
# CONFIG_XIP_KERNEL is not set
#

View File

@@ -172,7 +172,7 @@ CONFIG_ALIGNMENT_TRAP=y
#
CONFIG_ZBOOT_ROM_TEXT=0x0
CONFIG_ZBOOT_ROM_BSS=0x0
CONFIG_CMDLINE="console=ttyS0,57600 root=/dev/nfs ip=bootp mem=64M@0x0 pci=firmware"
CONFIG_CMDLINE="console=ttyS0,57600 root=/dev/nfs ip=bootp mem=64M@0x0"
# CONFIG_XIP_KERNEL is not set
#

View File

@@ -172,7 +172,7 @@ CONFIG_ALIGNMENT_TRAP=y
#
CONFIG_ZBOOT_ROM_TEXT=0x0
CONFIG_ZBOOT_ROM_BSS=0x0
CONFIG_CMDLINE="console=ttyS0,115200 root=/dev/nfs ip=bootp mem=64M@0x0 pci=firmware"
CONFIG_CMDLINE="console=ttyS0,115200 root=/dev/nfs ip=bootp mem=64M@0x0"
# CONFIG_XIP_KERNEL is not set
#

View File

@@ -172,7 +172,7 @@ CONFIG_ALIGNMENT_TRAP=y
#
CONFIG_ZBOOT_ROM_TEXT=0x0
CONFIG_ZBOOT_ROM_BSS=0x0
CONFIG_CMDLINE="console=ttyS0,115200 root=/dev/nfs ip=bootp mem=64M@0x0 pci=firmware ixdp2x01_clock=50000000"
CONFIG_CMDLINE="console=ttyS0,115200 root=/dev/nfs ip=bootp mem=64M@0x0"
# CONFIG_XIP_KERNEL is not set
#

View File

@@ -1,11 +1,10 @@
#
# Automatically generated make config: don't edit
# Linux kernel version: 2.6.15-rc1
# Sun Nov 13 17:41:24 2005
# Linux kernel version: 2.6.16-rc2
# Mon Feb 6 11:17:23 2006
#
CONFIG_ARM=y
CONFIG_MMU=y
CONFIG_UID16=y
CONFIG_RWSEM_GENERIC_SPINLOCK=y
CONFIG_GENERIC_CALIBRATE_DELAY=y
@@ -28,27 +27,31 @@ CONFIG_SYSVIPC=y
# CONFIG_BSD_PROCESS_ACCT is not set
CONFIG_SYSCTL=y
# CONFIG_AUDIT is not set
# CONFIG_HOTPLUG is not set
CONFIG_KOBJECT_UEVENT=y
# CONFIG_IKCONFIG is not set
CONFIG_INITRAMFS_SOURCE=""
CONFIG_UID16=y
CONFIG_CC_OPTIMIZE_FOR_SIZE=y
# CONFIG_EMBEDDED is not set
CONFIG_KALLSYMS=y
# CONFIG_KALLSYMS_ALL is not set
# CONFIG_KALLSYMS_EXTRA_PASS is not set
CONFIG_HOTPLUG=y
CONFIG_PRINTK=y
CONFIG_BUG=y
CONFIG_ELF_CORE=y
CONFIG_BASE_FULL=y
CONFIG_FUTEX=y
CONFIG_EPOLL=y
CONFIG_CC_OPTIMIZE_FOR_SIZE=y
CONFIG_SHMEM=y
CONFIG_CC_ALIGN_FUNCTIONS=0
CONFIG_CC_ALIGN_LABELS=0
CONFIG_CC_ALIGN_LOOPS=0
CONFIG_CC_ALIGN_JUMPS=0
CONFIG_SLAB=y
# CONFIG_TINY_SHMEM is not set
CONFIG_BASE_SMALL=0
# CONFIG_SLOB is not set
CONFIG_OBSOLETE_INTERMODULE=y
#
# Loadable module support
@@ -102,6 +105,7 @@ CONFIG_ARCH_S3C2410=y
# CONFIG_ARCH_IMX is not set
# CONFIG_ARCH_H720X is not set
# CONFIG_ARCH_AAEC2000 is not set
# CONFIG_ARCH_AT91RM9200 is not set
#
# S3C24XX Implementations
@@ -160,7 +164,6 @@ CONFIG_CPU_TLB_V4WBI=y
# Bus support
#
CONFIG_ISA=y
CONFIG_ISA_DMA_API=y
#
# PCCARD (PCMCIA/CardBus) support
@@ -172,6 +175,7 @@ CONFIG_ISA_DMA_API=y
#
# CONFIG_PREEMPT is not set
# CONFIG_NO_IDLE_HZ is not set
# CONFIG_AEABI is not set
# CONFIG_ARCH_DISCONTIGMEM_ENABLE is not set
CONFIG_SELECT_MEMORY_MODEL=y
CONFIG_FLATMEM_MANUAL=y
@@ -214,6 +218,8 @@ CONFIG_BINFMT_AOUT=y
# Power management options
#
CONFIG_PM=y
CONFIG_PM_LEGACY=y
# CONFIG_PM_DEBUG is not set
CONFIG_APM=y
#
@@ -259,6 +265,11 @@ CONFIG_TCP_CONG_BIC=y
# SCTP Configuration (EXPERIMENTAL)
#
# CONFIG_IP_SCTP is not set
#
# TIPC Configuration (EXPERIMENTAL)
#
# CONFIG_TIPC is not set
# CONFIG_ATM is not set
# CONFIG_BRIDGE is not set
# CONFIG_VLAN_8021Q is not set
@@ -276,7 +287,6 @@ CONFIG_TCP_CONG_BIC=y
# QoS and/or fair queueing
#
# CONFIG_NET_SCHED is not set
# CONFIG_NET_CLS_ROUTE is not set
#
# Network testing
@@ -299,6 +309,11 @@ CONFIG_PREVENT_FIRMWARE_BUILD=y
# CONFIG_FW_LOADER is not set
# CONFIG_DEBUG_DRIVER is not set
#
# Connector - unified userspace <-> kernelspace linker
#
# CONFIG_CONNECTOR is not set
#
# Memory Technology Devices (MTD)
#
@@ -412,8 +427,6 @@ CONFIG_PARPORT_1284=y
#
# Block devices
#
# CONFIG_BLK_DEV_XD is not set
# CONFIG_PARIDE is not set
# CONFIG_BLK_DEV_COW_COMMON is not set
CONFIG_BLK_DEV_LOOP=y
# CONFIG_BLK_DEV_CRYPTOLOOP is not set
@@ -502,7 +515,6 @@ CONFIG_NETDEVICES=y
CONFIG_NET_ETHERNET=y
CONFIG_MII=y
# CONFIG_NET_VENDOR_3COM is not set
# CONFIG_LANCE is not set
# CONFIG_NET_VENDOR_SMC is not set
# CONFIG_SMC91X is not set
CONFIG_DM9000=y
@@ -607,11 +619,11 @@ CONFIG_SERIAL_NONSTANDARD=y
# CONFIG_ROCKETPORT is not set
# CONFIG_CYCLADES is not set
# CONFIG_DIGIEPCA is not set
# CONFIG_ESPSERIAL is not set
# CONFIG_MOXA_INTELLIO is not set
# CONFIG_MOXA_SMARTIO is not set
# CONFIG_ISI is not set
# CONFIG_SYNCLINKMP is not set
# CONFIG_SYNCLINK_GT is not set
# CONFIG_N_HDLC is not set
# CONFIG_RISCOM8 is not set
# CONFIG_SPECIALIX is not set
@@ -625,6 +637,7 @@ CONFIG_SERIAL_NONSTANDARD=y
CONFIG_SERIAL_8250=y
CONFIG_SERIAL_8250_CONSOLE=y
CONFIG_SERIAL_8250_NR_UARTS=8
CONFIG_SERIAL_8250_RUNTIME_UARTS=4
CONFIG_SERIAL_8250_EXTENDED=y
CONFIG_SERIAL_8250_MANY_PORTS=y
CONFIG_SERIAL_8250_SHARE_IRQ=y
@@ -687,6 +700,7 @@ CONFIG_S3C2410_RTC=y
#
# TPM devices
#
# CONFIG_TCG_TPM is not set
# CONFIG_TELCLOCK is not set
#
@@ -730,6 +744,12 @@ CONFIG_SENSORS_EEPROM=m
# CONFIG_I2C_DEBUG_BUS is not set
# CONFIG_I2C_DEBUG_CHIP is not set
#
# SPI support
#
# CONFIG_SPI is not set
# CONFIG_SPI_MASTER is not set
#
# Hardware Monitoring support
#
@@ -863,6 +883,7 @@ CONFIG_FS_MBCACHE=y
# CONFIG_JFS_FS is not set
# CONFIG_FS_POSIX_ACL is not set
# CONFIG_XFS_FS is not set
# CONFIG_OCFS2_FS is not set
# CONFIG_MINIX_FS is not set
CONFIG_ROMFS_FS=y
CONFIG_INOTIFY=y
@@ -897,6 +918,7 @@ CONFIG_SYSFS=y
# CONFIG_HUGETLB_PAGE is not set
CONFIG_RAMFS=y
# CONFIG_RELAYFS_FS is not set
# CONFIG_CONFIGFS_FS is not set
#
# Miscellaneous filesystems
@@ -965,6 +987,7 @@ CONFIG_SOLARIS_X86_PARTITION=y
# CONFIG_SGI_PARTITION is not set
# CONFIG_ULTRIX_PARTITION is not set
# CONFIG_SUN_PARTITION is not set
# CONFIG_KARMA_PARTITION is not set
# CONFIG_EFI_PARTITION is not set
#
@@ -1020,12 +1043,13 @@ CONFIG_NLS_DEFAULT="iso8859-1"
# Kernel hacking
#
# CONFIG_PRINTK_TIME is not set
CONFIG_DEBUG_KERNEL=y
CONFIG_MAGIC_SYSRQ=y
CONFIG_DEBUG_KERNEL=y
CONFIG_LOG_BUF_SHIFT=16
CONFIG_DETECT_SOFTLOCKUP=y
# CONFIG_SCHEDSTATS is not set
# CONFIG_DEBUG_SLAB is not set
CONFIG_DEBUG_MUTEXES=y
# CONFIG_DEBUG_SPINLOCK is not set
# CONFIG_DEBUG_SPINLOCK_SLEEP is not set
# CONFIG_DEBUG_KOBJECT is not set
@@ -1034,6 +1058,7 @@ CONFIG_DEBUG_INFO=y
# CONFIG_DEBUG_FS is not set
# CONFIG_DEBUG_VM is not set
CONFIG_FRAME_POINTER=y
CONFIG_FORCED_INLINING=y
# CONFIG_RCU_TORTURE_TEST is not set
CONFIG_DEBUG_USER=y
# CONFIG_DEBUG_WAITQ is not set

View File

@@ -57,7 +57,9 @@ int main(void)
DEFINE(TI_TP_VALUE, offsetof(struct thread_info, tp_value));
DEFINE(TI_FPSTATE, offsetof(struct thread_info, fpstate));
DEFINE(TI_VFPSTATE, offsetof(struct thread_info, vfpstate));
DEFINE(TI_IWMMXT_STATE, (offsetof(struct thread_info, fpstate)+4)&~7);
#ifdef CONFIG_IWMMXT
DEFINE(TI_IWMMXT_STATE, offsetof(struct thread_info, fpstate.iwmmxt));
#endif
BLANK();
DEFINE(S_R0, offsetof(struct pt_regs, ARM_r0));
DEFINE(S_R1, offsetof(struct pt_regs, ARM_r1));

View File

@@ -111,7 +111,7 @@
CALL(sys_statfs)
/* 100 */ CALL(sys_fstatfs)
CALL(sys_ni_syscall)
CALL(OBSOLETE(sys_socketcall))
CALL(OBSOLETE(ABI(sys_socketcall, sys_oabi_socketcall)))
CALL(sys_syslog)
CALL(sys_setitimer)
/* 105 */ CALL(sys_getitimer)
@@ -291,21 +291,21 @@
CALL(sys_mq_getsetattr)
/* 280 */ CALL(sys_waitid)
CALL(sys_socket)
CALL(sys_bind)
CALL(sys_connect)
CALL(ABI(sys_bind, sys_oabi_bind))
CALL(ABI(sys_connect, sys_oabi_connect))
CALL(sys_listen)
/* 285 */ CALL(sys_accept)
CALL(sys_getsockname)
CALL(sys_getpeername)
CALL(sys_socketpair)
CALL(sys_send)
/* 290 */ CALL(sys_sendto)
/* 290 */ CALL(ABI(sys_sendto, sys_oabi_sendto))
CALL(sys_recv)
CALL(sys_recvfrom)
CALL(sys_shutdown)
CALL(sys_setsockopt)
/* 295 */ CALL(sys_getsockopt)
CALL(sys_sendmsg)
CALL(ABI(sys_sendmsg, sys_oabi_sendmsg))
CALL(sys_recvmsg)
CALL(ABI(sys_semop, sys_oabi_semop))
CALL(sys_semget)

View File

@@ -27,6 +27,8 @@
#include <asm/mach/arch.h>
#include "compat.h"
/*
* Usage:
* - do not go blindly adding fields, add them at the end

13
arch/arm/kernel/compat.h Normal file
View File

@@ -0,0 +1,13 @@
/*
* linux/arch/arm/kernel/compat.h
*
* Copyright (C) 2001 Russell King
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
extern void convert_to_tag_list(struct tag *tags);
extern void squash_mem_tags(struct tag *tag);

View File

@@ -333,9 +333,13 @@ __pabt_svc:
@ from the exception stack
#if __LINUX_ARM_ARCH__ < 6 && !defined(CONFIG_NEEDS_SYSCALL_FOR_CMPXCHG)
#ifndef CONFIG_MMU
#warning "NPTL on non MMU needs fixing"
#else
@ make sure our user space atomic helper is aborted
cmp r2, #TASK_SIZE
bichs r3, r3, #PSR_Z_BIT
#endif
#endif
@
@@ -562,7 +566,7 @@ ENTRY(__switch_to)
ldr r6, [r2, #TI_CPU_DOMAIN]!
#endif
#if __LINUX_ARM_ARCH__ >= 6
#ifdef CONFIG_CPU_MPCORE
#ifdef CONFIG_CPU_32v6K
clrex
#else
strex r5, r4, [ip] @ Clear exclusive monitor
@@ -705,7 +709,12 @@ __kuser_memory_barrier: @ 0xffff0fa0
* The C flag is also set if *ptr was changed to allow for assembly
* optimization in the calling code.
*
* Note: this routine already includes memory barriers as needed.
* Notes:
*
* - This routine already includes memory barriers as needed.
*
* - A failure might be transient, i.e. it is possible, although unlikely,
* that "failure" be returned even if *ptr == oldval.
*
* For example, a user space atomic_add implementation could look like this:
*
@@ -756,12 +765,18 @@ __kuser_cmpxchg: @ 0xffff0fc0
* exception happening just after the str instruction which would
* clear the Z flag although the exchange was done.
*/
#ifdef CONFIG_MMU
teq ip, ip @ set Z flag
ldr ip, [r2] @ load current val
add r3, r2, #1 @ prepare store ptr
teqeq ip, r0 @ compare with oldval if still allowed
streq r1, [r3, #-1]! @ store newval if still allowed
subs r0, r2, r3 @ if r2 == r3 the str occured
#else
#warning "NPTL on non MMU needs fixing"
mov r0, #-1
adds r0, r0, #0
#endif
mov pc, lr
#else

View File

@@ -27,6 +27,7 @@
#include <linux/kallsyms.h>
#include <linux/init.h>
#include <linux/cpu.h>
#include <linux/elfcore.h>
#include <asm/leds.h>
#include <asm/processor.h>
@@ -83,7 +84,7 @@ EXPORT_SYMBOL(pm_power_off);
* This is our default idle handler. We need to disable
* interrupts here to ensure we don't miss a wakeup call.
*/
void default_idle(void)
static void default_idle(void)
{
if (hlt_counter)
cpu_relax();

View File

@@ -610,15 +610,12 @@ static int ptrace_setfpregs(struct task_struct *tsk, void __user *ufp)
static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
{
struct thread_info *thread = task_thread_info(tsk);
void *ptr = &thread->fpstate;
if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
return -ENODATA;
iwmmxt_task_disable(thread); /* force it to ram */
/* The iWMMXt state is stored doubleword-aligned. */
if (((long) ptr) & 4)
ptr += 4;
return copy_to_user(ufp, ptr, 0x98) ? -EFAULT : 0;
return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
? -EFAULT : 0;
}
/*
@@ -627,15 +624,12 @@ static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
{
struct thread_info *thread = task_thread_info(tsk);
void *ptr = &thread->fpstate;
if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
return -EACCES;
iwmmxt_task_release(thread); /* force a reload */
/* The iWMMXt state is stored doubleword-aligned. */
if (((long) ptr) & 4)
ptr += 4;
return copy_from_user(ptr, ufp, 0x98) ? -EFAULT : 0;
return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
? -EFAULT : 0;
}
#endif

View File

@@ -23,6 +23,7 @@
#include <linux/root_dev.h>
#include <linux/cpu.h>
#include <linux/interrupt.h>
#include <linux/smp.h>
#include <asm/cpu.h>
#include <asm/elf.h>
@@ -36,6 +37,8 @@
#include <asm/mach/irq.h>
#include <asm/mach/time.h>
#include "compat.h"
#ifndef MEM_SIZE
#define MEM_SIZE (16*1024*1024)
#endif
@@ -52,10 +55,7 @@ static int __init fpe_setup(char *line)
__setup("fpe=", fpe_setup);
#endif
extern unsigned int mem_fclk_21285;
extern void paging_init(struct meminfo *, struct machine_desc *desc);
extern void convert_to_tag_list(struct tag *tags);
extern void squash_mem_tags(struct tag *tag);
extern void reboot_setup(char *str);
extern int root_mountflags;
extern void _stext, _text, _etext, __data_start, _edata, _end;
@@ -771,6 +771,10 @@ void __init setup_arch(char **cmdline_p)
paging_init(&meminfo, mdesc);
request_standard_resources(&meminfo, mdesc);
#ifdef CONFIG_SMP
smp_init_cpus();
#endif
cpu_init();
/*

View File

@@ -338,7 +338,6 @@ void __init smp_prepare_boot_cpu(void)
per_cpu(cpu_data, cpu).idle = current;
cpu_set(cpu, cpu_possible_map);
cpu_set(cpu, cpu_present_map);
cpu_set(cpu, cpu_online_map);
}

View File

@@ -59,6 +59,17 @@
* struct sembuf loses its padding with EABI. Since arrays of them are
* used they have to be copyed to remove the padding. Compatibility wrappers
* provided below.
*
* sys_bind:
* sys_connect:
* sys_sendmsg:
* sys_sendto:
* sys_socketcall:
*
* struct sockaddr_un loses its padding with EABI. Since the size of the
* structure is used as a validation test in unix_mkname(), we need to
* change the length argument to 110 whenever it is 112. Compatibility
* wrappers provided below.
*/
#include <linux/syscalls.h>
@@ -67,6 +78,8 @@
#include <linux/fcntl.h>
#include <linux/eventpoll.h>
#include <linux/sem.h>
#include <linux/socket.h>
#include <linux/net.h>
#include <asm/ipc.h>
#include <asm/uaccess.h>
@@ -337,3 +350,91 @@ asmlinkage int sys_oabi_ipc(uint call, int first, int second, int third,
return sys_ipc(call, first, second, third, ptr, fifth);
}
}
asmlinkage long sys_oabi_bind(int fd, struct sockaddr __user *addr, int addrlen)
{
sa_family_t sa_family;
if (addrlen == 112 &&
get_user(sa_family, &addr->sa_family) == 0 &&
sa_family == AF_UNIX)
addrlen = 110;
return sys_bind(fd, addr, addrlen);
}
asmlinkage long sys_oabi_connect(int fd, struct sockaddr __user *addr, int addrlen)
{
sa_family_t sa_family;
if (addrlen == 112 &&
get_user(sa_family, &addr->sa_family) == 0 &&
sa_family == AF_UNIX)
addrlen = 110;
return sys_connect(fd, addr, addrlen);
}
asmlinkage long sys_oabi_sendto(int fd, void __user *buff,
size_t len, unsigned flags,
struct sockaddr __user *addr,
int addrlen)
{
sa_family_t sa_family;
if (addrlen == 112 &&
get_user(sa_family, &addr->sa_family) == 0 &&
sa_family == AF_UNIX)
addrlen = 110;
return sys_sendto(fd, buff, len, flags, addr, addrlen);
}
asmlinkage long sys_oabi_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
{
struct sockaddr __user *addr;
int msg_namelen;
sa_family_t sa_family;
if (msg &&
get_user(msg_namelen, &msg->msg_namelen) == 0 &&
msg_namelen == 112 &&
get_user(addr, &msg->msg_name) == 0 &&
get_user(sa_family, &addr->sa_family) == 0 &&
sa_family == AF_UNIX)
{
/*
* HACK ALERT: there is a limit to how much backward bending
* we should do for what is actually a transitional
* compatibility layer. This already has known flaws with
* a few ioctls that we don't intend to fix. Therefore
* consider this blatent hack as another one... and take care
* to run for cover. In most cases it will "just work fine".
* If it doesn't, well, tough.
*/
put_user(110, &msg->msg_namelen);
}
return sys_sendmsg(fd, msg, flags);
}
asmlinkage long sys_oabi_socketcall(int call, unsigned long __user *args)
{
unsigned long r = -EFAULT, a[6];
switch (call) {
case SYS_BIND:
if (copy_from_user(a, args, 3 * sizeof(long)) == 0)
r = sys_oabi_bind(a[0], (struct sockaddr __user *)a[1], a[2]);
break;
case SYS_CONNECT:
if (copy_from_user(a, args, 3 * sizeof(long)) == 0)
r = sys_oabi_connect(a[0], (struct sockaddr __user *)a[1], a[2]);
break;
case SYS_SENDTO:
if (copy_from_user(a, args, 6 * sizeof(long)) == 0)
r = sys_oabi_sendto(a[0], (void __user *)a[1], a[2], a[3],
(struct sockaddr __user *)a[4], a[5]);
break;
case SYS_SENDMSG:
if (copy_from_user(a, args, 3 * sizeof(long)) == 0)
r = sys_oabi_sendmsg(a[0], (struct msghdr __user *)a[1], a[2]);
break;
default:
r = sys_socketcall(call, args);
}
return r;
}

View File

@@ -422,12 +422,14 @@ static int timer_dyn_tick_disable(void)
void timer_dyn_reprogram(void)
{
struct dyn_tick_timer *dyn_tick = system_timer->dyn_tick;
unsigned long next, seq;
if (dyn_tick) {
write_seqlock(&xtime_lock);
if (dyn_tick->state & DYN_TICK_ENABLED)
if (dyn_tick && (dyn_tick->state & DYN_TICK_ENABLED)) {
next = next_timer_interrupt();
do {
seq = read_seqbegin(&xtime_lock);
dyn_tick->reprogram(next_timer_interrupt() - jiffies);
write_sequnlock(&xtime_lock);
} while (read_seqretry(&xtime_lock, seq));
}
}

View File

@@ -19,6 +19,7 @@
#include <linux/personality.h>
#include <linux/ptrace.h>
#include <linux/kallsyms.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <asm/atomic.h>
@@ -231,6 +232,13 @@ NORET_TYPE void die(const char *str, struct pt_regs *regs, int err)
__die(str, err, thread, regs);
bust_spinlocks(0);
spin_unlock_irq(&die_lock);
if (panic_on_oops) {
printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
ssleep(5);
panic("Fatal exception");
}
do_exit(SIGSEGV);
}

View File

@@ -29,8 +29,8 @@ ENTRY(__aeabi_lmul)
mul xh, yl, xh
mla xh, xl, yh, xh
mov ip, xl, asr #16
mov yh, yl, asr #16
mov ip, xl, lsr #16
mov yh, yl, lsr #16
bic xl, xl, ip, lsl #16
bic yl, yl, yh, lsl #16
mla xh, yh, ip, xh

View File

@@ -100,8 +100,10 @@ void __init at91_add_device_udc(struct at91_udc_data *data)
at91_set_gpio_input(data->vbus_pin, 0);
at91_set_deglitch(data->vbus_pin, 1);
}
if (data->pullup_pin)
if (data->pullup_pin) {
at91_set_gpio_output(data->pullup_pin, 0);
at91_set_multi_drive(data->pullup_pin, 1);
}
udc_data = *data;
platform_device_register(&at91rm9200_udc_device);

View File

@@ -159,6 +159,23 @@ int __init_or_module at91_set_deglitch(unsigned pin, int is_on)
}
EXPORT_SYMBOL(at91_set_deglitch);
/*
* enable/disable the multi-driver; This is only valid for output and
* allows the output pin to run as an open collector output.
*/
int __init_or_module at91_set_multi_drive(unsigned pin, int is_on)
{
void __iomem *pio = pin_to_controller(pin);
unsigned mask = pin_to_mask(pin);
if (!pio)
return -EINVAL;
__raw_writel(mask, pio + (is_on ? PIO_MDER : PIO_MDDR));
return 0;
}
EXPORT_SYMBOL(at91_set_multi_drive);
/*--------------------------------------------------------------------------*/
@@ -257,8 +274,18 @@ static void gpio_irq_handler(unsigned irq, struct irqdesc *desc, struct pt_regs
gpio = &irq_desc[pin];
while (isr) {
if (isr & 1)
gpio->handle(pin, gpio, regs);
if (isr & 1) {
if (unlikely(gpio->disable_depth)) {
/*
* The core ARM interrupt handler lazily disables IRQs so
* another IRQ must be generated before it actually gets
* here to be disabled on the GPIO controller.
*/
gpio_irq_mask(pin);
}
else
gpio->handle(pin, gpio, regs);
}
pin++;
gpio++;
isr >>= 1;

View File

@@ -24,6 +24,8 @@ config ARCH_CEIVA
config ARCH_CLEP7312
bool "CLEP7312"
help
Boards based on the Cirrus Logic 7212/7312 chips.
config ARCH_EDB7211
bool "EDB7211"

View File

@@ -27,7 +27,6 @@
#include <asm/mach/arch.h>
#include <linux/interrupt.h>
#include "generic.h"
#include <asm/serial.h>
static struct resource cs89x0_resources[] = {
[0] = {

View File

@@ -140,6 +140,18 @@ static void __init poke_milo(void)
mb();
}
/*
* Initialise the CPU possible map early - this describes the CPUs
* which may be present or become present in the system.
*/
void __init smp_init_cpus(void)
{
unsigned int i, ncores = get_core_count();
for (i = 0; i < ncores; i++)
cpu_set(i, cpu_possible_map);
}
void __init smp_prepare_cpus(unsigned int max_cpus)
{
unsigned int ncores = get_core_count();
@@ -176,14 +188,11 @@ void __init smp_prepare_cpus(unsigned int max_cpus)
max_cpus = ncores;
/*
* Initialise the possible/present maps.
* cpu_possible_map describes the set of CPUs which may be present
* cpu_present_map describes the set of CPUs populated
* Initialise the present map, which describes the set of CPUs
* actually populated at the present time.
*/
for (i = 0; i < max_cpus; i++) {
cpu_set(i, cpu_possible_map);
for (i = 0; i < max_cpus; i++)
cpu_set(i, cpu_present_map);
}
/*
* Do we need any more CPUs? If so, then let them know where

View File

@@ -13,7 +13,6 @@
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/config.h>
#include <linux/init.h>
#include <linux/major.h>
#include <linux/fs.h>
#include <linux/platform_device.h>

View File

@@ -12,7 +12,6 @@
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/config.h>
#include <linux/init.h>
#include <linux/major.h>
#include <linux/fs.h>
#include <linux/platform_device.h>

View File

@@ -106,6 +106,7 @@ static void __init enp2611_pci_preinit(void)
{
ixp2000_reg_write(IXP2000_PCI_ADDR_EXT, 0x00100000);
ixp2000_pci_preinit();
pcibios_setup("firmware");
}
static inline int enp2611_pci_valid_device(struct pci_bus *bus,

View File

@@ -68,6 +68,7 @@ void __init ixdp2400_pci_preinit(void)
{
ixp2000_reg_write(IXP2000_PCI_ADDR_EXT, 0x00100000);
ixp2000_pci_preinit();
pcibios_setup("firmware");
}
int ixdp2400_pci_setup(int nr, struct pci_sys_data *sys)

View File

@@ -212,6 +212,7 @@ void __init ixdp2x01_pci_preinit(void)
{
ixp2000_reg_write(IXP2000_PCI_ADDR_EXT, 0x00000000);
ixp2000_pci_preinit();
pcibios_setup("firmware");
}
#define DEVPIN(dev, pin) ((pin) | ((dev) << 3))
@@ -299,7 +300,9 @@ struct hw_pci ixdp2x01_pci __initdata = {
int __init ixdp2x01_pci_init(void)
{
pci_common_init(&ixdp2x01_pci);
if (machine_is_ixdp2401() || machine_is_ixdp2801())
pci_common_init(&ixdp2x01_pci);
return 0;
}

View File

@@ -8,11 +8,9 @@ menu "Intel IXP4xx Implementation Options"
comment "IXP4xx Platforms"
# This entry is placed on top because otherwise it would have
# been shown as a submenu.
config MACH_NSLU2
bool
prompt "NSLU2" if !(MACH_IXDP465 || MACH_IXDPG425 || ARCH_IXDP425 || ARCH_ADI_COYOTE || ARCH_AVILA || ARCH_IXCDP1100 || ARCH_PRPMC1100 || MACH_GTWX5715)
prompt "Linksys NSLU2"
help
Say 'Y' here if you want your kernel to support Linksys's
NSLU2 NAS device. For more information on this platform,

View File

@@ -111,24 +111,30 @@ static int ixp4xx_set_irq_type(unsigned int irq, unsigned int type)
if (line < 0)
return -EINVAL;
if (type & IRQT_BOTHEDGE) {
switch (type){
case IRQT_BOTHEDGE:
int_style = IXP4XX_GPIO_STYLE_TRANSITIONAL;
irq_type = IXP4XX_IRQ_EDGE;
} else if (type & IRQT_RISING) {
break;
case IRQT_RISING:
int_style = IXP4XX_GPIO_STYLE_RISING_EDGE;
irq_type = IXP4XX_IRQ_EDGE;
} else if (type & IRQT_FALLING) {
break;
case IRQT_FALLING:
int_style = IXP4XX_GPIO_STYLE_FALLING_EDGE;
irq_type = IXP4XX_IRQ_EDGE;
} else if (type & IRQT_HIGH) {
break;
case IRQT_HIGH:
int_style = IXP4XX_GPIO_STYLE_ACTIVE_HIGH;
irq_type = IXP4XX_IRQ_LEVEL;
} else if (type & IRQT_LOW) {
break;
case IRQT_LOW:
int_style = IXP4XX_GPIO_STYLE_ACTIVE_LOW;
irq_type = IXP4XX_IRQ_LEVEL;
} else
break;
default:
return -EINVAL;
}
ixp4xx_config_irq(irq, irq_type);
if (line >= 8) { /* pins 8-15 */

View File

@@ -56,6 +56,9 @@ static int __init nas100d_power_init(void)
static void __exit nas100d_power_exit(void)
{
if (!(machine_is_nas100d()))
return;
free_irq(NAS100D_RB_IRQ, NULL);
}

View File

@@ -113,6 +113,9 @@ static void __init nas100d_init(void)
{
ixp4xx_sys_init();
/* gpio 14 and 15 are _not_ clocks */
*IXP4XX_GPIO_GPCLKR = 0;
nas100d_flash_resource.start = IXP4XX_EXP_BUS_BASE(0);
nas100d_flash_resource.end =
IXP4XX_EXP_BUS_BASE(0) + ixp4xx_exp_bus_size - 1;

View File

@@ -77,6 +77,9 @@ static int __init nslu2_power_init(void)
static void __exit nslu2_power_exit(void)
{
if (!(machine_is_nslu2()))
return;
free_irq(NSLU2_RB_IRQ, NULL);
free_irq(NSLU2_PB_IRQ, NULL);
}

View File

@@ -27,8 +27,6 @@ static struct flash_platform_data nslu2_flash_data = {
};
static struct resource nslu2_flash_resource = {
.start = NSLU2_FLASH_BASE,
.end = NSLU2_FLASH_BASE + NSLU2_FLASH_SIZE,
.flags = IORESOURCE_MEM,
};
@@ -52,6 +50,12 @@ static struct platform_device nslu2_i2c_controller = {
.num_resources = 0,
};
static struct platform_device nslu2_beeper = {
.name = "ixp4xx-beeper",
.id = NSLU2_GPIO_BUZZ,
.num_resources = 0,
};
static struct resource nslu2_uart_resources[] = {
{
.start = IXP4XX_UART1_BASE_PHYS,
@@ -99,6 +103,7 @@ static struct platform_device *nslu2_devices[] __initdata = {
&nslu2_i2c_controller,
&nslu2_flash,
&nslu2_uart,
&nslu2_beeper,
};
static void nslu2_power_off(void)
@@ -116,6 +121,10 @@ static void __init nslu2_init(void)
{
ixp4xx_sys_init();
nslu2_flash_resource.start = IXP4XX_EXP_BUS_BASE(0);
nslu2_flash_resource.end =
IXP4XX_EXP_BUS_BASE(0) + ixp4xx_exp_bus_size - 1;
pm_power_off = nslu2_power_off;
platform_add_devices(nslu2_devices, ARRAY_SIZE(nslu2_devices));

View File

@@ -30,6 +30,7 @@
static void __init omap_generic_init_irq(void)
{
omap1_init_common_hw();
omap_init_irq();
}
@@ -104,7 +105,7 @@ static void __init omap_generic_init(void)
static void __init omap_generic_map_io(void)
{
omap_map_common_io();
omap1_map_common_io();
}
MACHINE_START(OMAP_GENERIC, "Generic OMAP1510/1610/1710")

View File

@@ -128,6 +128,7 @@ static void __init h2_init_smc91x(void)
static void __init h2_init_irq(void)
{
omap1_init_common_hw();
omap_init_irq();
omap_gpio_init();
h2_init_smc91x();
@@ -194,7 +195,7 @@ static void __init h2_init(void)
static void __init h2_map_io(void)
{
omap_map_common_io();
omap1_map_common_io();
}
MACHINE_START(OMAP_H2, "TI-H2")

View File

@@ -203,6 +203,7 @@ static void __init h3_init_smc91x(void)
void h3_init_irq(void)
{
omap1_init_common_hw();
omap_init_irq();
omap_gpio_init();
h3_init_smc91x();
@@ -210,7 +211,7 @@ void h3_init_irq(void)
static void __init h3_map_io(void)
{
omap_map_common_io();
omap1_map_common_io();
}
MACHINE_START(OMAP_H3, "TI OMAP1710 H3 board")

View File

@@ -181,6 +181,7 @@ static void __init innovator_init_smc91x(void)
void innovator_init_irq(void)
{
omap1_init_common_hw();
omap_init_irq();
omap_gpio_init();
#ifdef CONFIG_ARCH_OMAP15XX
@@ -285,7 +286,7 @@ static void __init innovator_init(void)
static void __init innovator_map_io(void)
{
omap_map_common_io();
omap1_map_common_io();
#ifdef CONFIG_ARCH_OMAP15XX
if (cpu_is_omap1510()) {

View File

@@ -65,6 +65,7 @@ static struct omap_board_config_kernel netstar_config[] = {
static void __init netstar_init_irq(void)
{
omap1_init_common_hw();
omap_init_irq();
omap_gpio_init();
}
@@ -108,7 +109,7 @@ static void __init netstar_init(void)
static void __init netstar_map_io(void)
{
omap_map_common_io();
omap1_map_common_io();
}
#define MACHINE_PANICED 1

View File

@@ -169,6 +169,7 @@ static void __init osk_init_cf(void)
static void __init osk_init_irq(void)
{
omap1_init_common_hw();
omap_init_irq();
omap_gpio_init();
osk_init_smc91x();
@@ -269,7 +270,7 @@ static void __init osk_init(void)
static void __init osk_map_io(void)
{
omap_map_common_io();
omap1_map_common_io();
}
MACHINE_START(OMAP_OSK, "TI-OSK")

View File

@@ -34,6 +34,7 @@
static void __init omap_generic_init_irq(void)
{
omap1_init_common_hw();
omap_init_irq();
}
@@ -72,7 +73,7 @@ static void __init omap_generic_init(void)
static void __init omap_generic_map_io(void)
{
omap_map_common_io();
omap1_map_common_io();
}
MACHINE_START(OMAP_PALMTE, "OMAP310 based Palm Tungsten E")

View File

@@ -144,6 +144,7 @@ static void __init perseus2_init_smc91x(void)
void omap_perseus2_init_irq(void)
{
omap1_init_common_hw();
omap_init_irq();
omap_gpio_init();
perseus2_init_smc91x();
@@ -160,7 +161,7 @@ static struct map_desc omap_perseus2_io_desc[] __initdata = {
static void __init omap_perseus2_map_io(void)
{
omap_map_common_io();
omap1_map_common_io();
iotable_init(omap_perseus2_io_desc,
ARRAY_SIZE(omap_perseus2_io_desc));

View File

@@ -162,6 +162,7 @@ static struct omap_board_config_kernel voiceblue_config[] = {
static void __init voiceblue_init_irq(void)
{
omap1_init_common_hw();
omap_init_irq();
omap_gpio_init();
}
@@ -206,7 +207,7 @@ static void __init voiceblue_init(void)
static void __init voiceblue_map_io(void)
{
omap_map_common_io();
omap1_map_common_io();
}
#define MACHINE_PANICED 1

View File

@@ -13,6 +13,7 @@
#include <linux/kernel.h>
#include <linux/init.h>
#include <asm/tlb.h>
#include <asm/mach/map.h>
#include <asm/io.h>
#include <asm/arch/mux.h>
@@ -83,15 +84,24 @@ static struct map_desc omap16xx_io_desc[] __initdata = {
};
#endif
static int initialized = 0;
static void __init _omap_map_io(void)
/*
* Maps common IO regions for omap1. This should only get called from
* board specific init.
*/
void __init omap1_map_common_io(void)
{
initialized = 1;
/* We have to initialize the IO space mapping before we can run
* cpu_is_omapxxx() macros. */
iotable_init(omap_io_desc, ARRAY_SIZE(omap_io_desc));
/* Normally devicemaps_init() would flush caches and tlb after
* mdesc->map_io(), but we must also do it here because of the CPU
* revision check below.
*/
local_flush_tlb_all();
flush_cache_all();
/* We want to check CPU revision early for cpu_is_omapxxxx() macros.
* IO space mapping must be initialized before we can do that.
*/
omap_check_revision();
#ifdef CONFIG_ARCH_OMAP730
@@ -111,7 +121,14 @@ static void __init _omap_map_io(void)
#endif
omap_sram_init();
}
/*
* Common low-level hardware init for omap1. This should only get called from
* board specific init.
*/
void __init omap1_init_common_hw()
{
/* REVISIT: Refer to OMAP5910 Errata, Advisory SYS_1: "Timeout Abort
* on a Posted Write in the TIPB Bridge".
*/
@@ -121,16 +138,7 @@ static void __init _omap_map_io(void)
/* Must init clocks early to assure that timer interrupt works
*/
omap1_clk_init();
}
/*
* This should only get called from board specific init
*/
void __init omap_map_common_io(void)
{
if (!initialized) {
_omap_map_io();
omap1_mux_init();
}
omap1_mux_init();
}

View File

@@ -33,6 +33,7 @@
static void __init omap_generic_init_irq(void)
{
omap2_init_common_hw();
omap_init_irq();
}
@@ -64,7 +65,7 @@ static void __init omap_generic_init(void)
static void __init omap_generic_map_io(void)
{
omap_map_common_io();
omap2_map_common_io();
}
MACHINE_START(OMAP_GENERIC, "Generic OMAP24xx")

View File

@@ -136,6 +136,7 @@ static inline void __init h4_init_smc91x(void)
static void __init omap_h4_init_irq(void)
{
omap2_init_common_hw();
omap_init_irq();
omap_gpio_init();
h4_init_smc91x();
@@ -181,7 +182,7 @@ static void __init omap_h4_init(void)
static void __init omap_h4_map_io(void)
{
omap_map_common_io();
omap2_map_common_io();
}
MACHINE_START(OMAP_H4, "OMAP2420 H4 board")

View File

@@ -44,7 +44,7 @@ unsigned int get_clk_frequency_khz( int info)
/* Read clkcfg register: it has turbo, b, half-turbo (and f) */
asm( "mrc\tp14, 0, %0, c6, c0, 0" : "=r" (clkcfg) );
t = clkcfg & (1 << 1);
t = clkcfg & (1 << 0);
ht = clkcfg & (1 << 2);
b = clkcfg & (1 << 3);

View File

@@ -182,7 +182,7 @@ static const struct icst307_params realview_oscvco_params = {
static void realview_oscvco_set(struct clk *clk, struct icst307_vco vco)
{
void __iomem *sys_lock = __io_address(REALVIEW_SYS_BASE) + REALVIEW_SYS_LOCK_OFFSET;
void __iomem *sys_osc = __io_address(REALVIEW_SYS_BASE) + REALVIEW_SYS_OSC1_OFFSET;
void __iomem *sys_osc = __io_address(REALVIEW_SYS_BASE) + REALVIEW_SYS_OSC4_OFFSET;
u32 val;
val = readl(sys_osc) & ~0x7ffff;

View File

@@ -143,6 +143,18 @@ static void __init poke_milo(void)
mb();
}
/*
* Initialise the CPU possible map early - this describes the CPUs
* which may be present or become present in the system.
*/
void __init smp_init_cpus(void)
{
unsigned int i, ncores = get_core_count();
for (i = 0; i < ncores; i++)
cpu_set(i, cpu_possible_map);
}
void __init smp_prepare_cpus(unsigned int max_cpus)
{
unsigned int ncores = get_core_count();
@@ -179,14 +191,11 @@ void __init smp_prepare_cpus(unsigned int max_cpus)
local_timer_setup(cpu);
/*
* Initialise the possible/present maps.
* cpu_possible_map describes the set of CPUs which may be present
* cpu_present_map describes the set of CPUs populated
* Initialise the present map, which describes the set of CPUs
* actually populated at the present time.
*/
for (i = 0; i < max_cpus; i++) {
cpu_set(i, cpu_possible_map);
for (i = 0; i < max_cpus; i++)
cpu_set(i, cpu_present_map);
}
/*
* Do we need any more CPUs? If so, then let them know where

View File

@@ -10,9 +10,13 @@ obj-m :=
obj-n :=
obj- :=
# S3C2400 support files
obj-$(CONFIG_CPU_S3C2400) += s3c2400-gpio.o
# S3C2410 support files
obj-$(CONFIG_CPU_S3C2410) += s3c2410.o
obj-$(CONFIG_CPU_S3C2410) += s3c2410-gpio.o
obj-$(CONFIG_S3C2410_DMA) += dma.o
# Power Management support
@@ -25,6 +29,7 @@ obj-$(CONFIG_PM_SIMTEC) += pm-simtec.o
obj-$(CONFIG_CPU_S3C2440) += s3c2440.o s3c2440-dsc.o
obj-$(CONFIG_CPU_S3C2440) += s3c2440-irq.o
obj-$(CONFIG_CPU_S3C2440) += s3c2440-clock.o
obj-$(CONFIG_CPU_S3C2440) += s3c2410-gpio.o
# bast extras

View File

@@ -40,7 +40,6 @@
#include <linux/mutex.h>
#include <asm/hardware.h>
#include <asm/atomic.h>
#include <asm/irq.h>
#include <asm/io.h>
@@ -59,22 +58,18 @@ static DEFINE_MUTEX(clocks_mutex);
void inline s3c24xx_clk_enable(unsigned int clocks, unsigned int enable)
{
unsigned long clkcon;
unsigned long flags;
local_irq_save(flags);
clkcon = __raw_readl(S3C2410_CLKCON);
clkcon &= ~clocks;
if (enable)
clkcon |= clocks;
else
clkcon &= ~clocks;
/* ensure none of the special function bits set */
clkcon &= ~(S3C2410_CLKCON_IDLE|S3C2410_CLKCON_POWER);
__raw_writel(clkcon, S3C2410_CLKCON);
local_irq_restore(flags);
}
/* enable and disable calls for use with the clk struct */
@@ -138,16 +133,32 @@ void clk_put(struct clk *clk)
int clk_enable(struct clk *clk)
{
if (IS_ERR(clk))
if (IS_ERR(clk) || clk == NULL)
return -EINVAL;
return (clk->enable)(clk, 1);
clk_enable(clk->parent);
mutex_lock(&clocks_mutex);
if ((clk->usage++) == 0)
(clk->enable)(clk, 1);
mutex_unlock(&clocks_mutex);
return 0;
}
void clk_disable(struct clk *clk)
{
if (!IS_ERR(clk))
if (IS_ERR(clk) || clk == NULL)
return;
mutex_lock(&clocks_mutex);
if ((--clk->usage) == 0)
(clk->enable)(clk, 0);
mutex_unlock(&clocks_mutex);
clk_disable(clk->parent);
}
@@ -361,6 +372,14 @@ int s3c24xx_register_clock(struct clk *clk)
if (clk->enable == NULL)
clk->enable = clk_null_enable;
/* if this is a standard clock, set the usage state */
if (clk->ctrlbit) {
unsigned long clkcon = __raw_readl(S3C2410_CLKCON);
clk->usage = (clkcon & clk->ctrlbit) ? 1 : 0;
}
/* add to the list of available clocks */
mutex_lock(&clocks_mutex);
@@ -402,6 +421,8 @@ int __init s3c24xx_setup_clocks(unsigned long xtal,
* the LCD clock if it is not needed.
*/
mutex_lock(&clocks_mutex);
s3c24xx_clk_enable(S3C2410_CLKCON_NAND, 0);
s3c24xx_clk_enable(S3C2410_CLKCON_USBH, 0);
s3c24xx_clk_enable(S3C2410_CLKCON_USBD, 0);
@@ -409,6 +430,8 @@ int __init s3c24xx_setup_clocks(unsigned long xtal,
s3c24xx_clk_enable(S3C2410_CLKCON_IIC, 0);
s3c24xx_clk_enable(S3C2410_CLKCON_SPI, 0);
mutex_unlock(&clocks_mutex);
/* assume uart clocks are correctly setup */
/* register our clocks */

View File

@@ -16,6 +16,7 @@ struct clk {
struct clk *parent;
const char *name;
int id;
int usage;
unsigned long rate;
unsigned long ctrlbit;
int (*enable)(struct clk *, int enable);

View File

@@ -40,6 +40,7 @@
#include "cpu.h"
#include "clock.h"
#include "s3c2400.h"
#include "s3c2410.h"
#include "s3c2440.h"
@@ -55,6 +56,7 @@ struct cpu_table {
/* table of supported CPUs */
static const char name_s3c2400[] = "S3C2400";
static const char name_s3c2410[] = "S3C2410";
static const char name_s3c2440[] = "S3C2440";
static const char name_s3c2410a[] = "S3C2410A";
@@ -96,7 +98,16 @@ static struct cpu_table cpu_ids[] __initdata = {
.init_uarts = s3c2440_init_uarts,
.init = s3c2440_init,
.name = name_s3c2440a
}
},
{
.idcode = 0x0, /* S3C2400 doesn't have an idcode */
.idmask = 0xffffffff,
.map_io = s3c2400_map_io,
.init_clocks = s3c2400_init_clocks,
.init_uarts = s3c2400_init_uarts,
.init = s3c2400_init,
.name = name_s3c2400
},
};
/* minimal IO mapping */
@@ -148,12 +159,15 @@ static struct cpu_table *cpu;
void __init s3c24xx_init_io(struct map_desc *mach_desc, int size)
{
unsigned long idcode;
unsigned long idcode = 0x0;
/* initialise the io descriptors we need for initialisation */
iotable_init(s3c_iodesc, ARRAY_SIZE(s3c_iodesc));
#ifndef CONFIG_CPU_S3C2400
idcode = __raw_readl(S3C2410_GSTATUS1);
#endif
cpu = s3c_lookup_cpu(idcode);
if (cpu == NULL) {

View File

@@ -275,6 +275,11 @@ static struct resource s3c_adc_resource[] = {
},
[1] = {
.start = IRQ_TC,
.end = IRQ_TC,
.flags = IORESOURCE_IRQ,
},
[2] = {
.start = IRQ_ADC,
.end = IRQ_ADC,
.flags = IORESOURCE_IRQ,
}
@@ -329,11 +334,17 @@ static struct resource s3c_spi0_resource[] = {
};
static u64 s3c_device_spi0_dmamask = 0xffffffffUL;
struct platform_device s3c_device_spi0 = {
.name = "s3c2410-spi",
.id = 0,
.num_resources = ARRAY_SIZE(s3c_spi0_resource),
.resource = s3c_spi0_resource,
.dev = {
.dma_mask = &s3c_device_spi0_dmamask,
.coherent_dma_mask = 0xffffffffUL
}
};
EXPORT_SYMBOL(s3c_device_spi0);
@@ -354,11 +365,17 @@ static struct resource s3c_spi1_resource[] = {
};
static u64 s3c_device_spi1_dmamask = 0xffffffffUL;
struct platform_device s3c_device_spi1 = {
.name = "s3c2410-spi",
.id = 1,
.num_resources = ARRAY_SIZE(s3c_spi1_resource),
.resource = s3c_spi1_resource,
.dev = {
.dma_mask = &s3c_device_spi1_dmamask,
.coherent_dma_mask = 0xffffffffUL
}
};
EXPORT_SYMBOL(s3c_device_spi1);

View File

@@ -31,6 +31,7 @@
* 05-Nov-2004 BJD EXPORT_SYMBOL() added for all code
* 13-Mar-2005 BJD Updates for __iomem
* 26-Oct-2005 BJD Added generic configuration types
* 15-Jan-2006 LCVR Added support for the S3C2400
*/
@@ -48,7 +49,7 @@
void s3c2410_gpio_cfgpin(unsigned int pin, unsigned int function)
{
void __iomem *base = S3C2410_GPIO_BASE(pin);
void __iomem *base = S3C24XX_GPIO_BASE(pin);
unsigned long mask;
unsigned long con;
unsigned long flags;
@@ -95,7 +96,7 @@ EXPORT_SYMBOL(s3c2410_gpio_cfgpin);
unsigned int s3c2410_gpio_getcfg(unsigned int pin)
{
void __iomem *base = S3C2410_GPIO_BASE(pin);
void __iomem *base = S3C24XX_GPIO_BASE(pin);
unsigned long mask;
if (pin < S3C2410_GPIO_BANKB) {
@@ -111,7 +112,7 @@ EXPORT_SYMBOL(s3c2410_gpio_getcfg);
void s3c2410_gpio_pullup(unsigned int pin, unsigned int to)
{
void __iomem *base = S3C2410_GPIO_BASE(pin);
void __iomem *base = S3C24XX_GPIO_BASE(pin);
unsigned long offs = S3C2410_GPIO_OFFSET(pin);
unsigned long flags;
unsigned long up;
@@ -133,7 +134,7 @@ EXPORT_SYMBOL(s3c2410_gpio_pullup);
void s3c2410_gpio_setpin(unsigned int pin, unsigned int to)
{
void __iomem *base = S3C2410_GPIO_BASE(pin);
void __iomem *base = S3C24XX_GPIO_BASE(pin);
unsigned long offs = S3C2410_GPIO_OFFSET(pin);
unsigned long flags;
unsigned long dat;
@@ -152,7 +153,7 @@ EXPORT_SYMBOL(s3c2410_gpio_setpin);
unsigned int s3c2410_gpio_getpin(unsigned int pin)
{
void __iomem *base = S3C2410_GPIO_BASE(pin);
void __iomem *base = S3C24XX_GPIO_BASE(pin);
unsigned long offs = S3C2410_GPIO_OFFSET(pin);
return __raw_readl(base + 0x04) & (1<< offs);
@@ -166,70 +167,13 @@ unsigned int s3c2410_modify_misccr(unsigned int clear, unsigned int change)
unsigned long misccr;
local_irq_save(flags);
misccr = __raw_readl(S3C2410_MISCCR);
misccr = __raw_readl(S3C24XX_MISCCR);
misccr &= ~clear;
misccr ^= change;
__raw_writel(misccr, S3C2410_MISCCR);
__raw_writel(misccr, S3C24XX_MISCCR);
local_irq_restore(flags);
return misccr;
}
EXPORT_SYMBOL(s3c2410_modify_misccr);
int s3c2410_gpio_getirq(unsigned int pin)
{
if (pin < S3C2410_GPF0 || pin > S3C2410_GPG15_EINT23)
return -1; /* not valid interrupts */
if (pin < S3C2410_GPG0 && pin > S3C2410_GPF7)
return -1; /* not valid pin */
if (pin < S3C2410_GPF4)
return (pin - S3C2410_GPF0) + IRQ_EINT0;
if (pin < S3C2410_GPG0)
return (pin - S3C2410_GPF4) + IRQ_EINT4;
return (pin - S3C2410_GPG0) + IRQ_EINT8;
}
EXPORT_SYMBOL(s3c2410_gpio_getirq);
int s3c2410_gpio_irqfilter(unsigned int pin, unsigned int on,
unsigned int config)
{
void __iomem *reg = S3C2410_EINFLT0;
unsigned long flags;
unsigned long val;
if (pin < S3C2410_GPG8 || pin > S3C2410_GPG15)
return -1;
config &= 0xff;
pin -= S3C2410_GPG8_EINT16;
reg += pin & ~3;
local_irq_save(flags);
/* update filter width and clock source */
val = __raw_readl(reg);
val &= ~(0xff << ((pin & 3) * 8));
val |= config << ((pin & 3) * 8);
__raw_writel(val, reg);
/* update filter enable */
val = __raw_readl(S3C2410_EXTINT2);
val &= ~(1 << ((pin * 4) + 3));
val |= on << ((pin * 4) + 3);
__raw_writel(val, S3C2410_EXTINT2);
local_irq_restore(flags);
return 0;
}
EXPORT_SYMBOL(s3c2410_gpio_irqfilter);

View File

@@ -46,10 +46,11 @@
#include <asm/irq.h>
#include <asm/mach-types.h>
//#include <asm/debug-ll.h>
#include <asm/arch/regs-serial.h>
#include <asm/arch/regs-lcd.h>
#include <asm/arch/h1940-latch.h>
#include <asm/arch/fb.h>
#include <linux/serial_core.h>
@@ -59,7 +60,12 @@
#include "cpu.h"
static struct map_desc h1940_iodesc[] __initdata = {
/* nothing here yet */
[0] = {
.virtual = (unsigned long)H1940_LATCH,
.pfn = __phys_to_pfn(H1940_PA_LATCH),
.length = SZ_16K,
.type = MT_DEVICE
},
};
#define UCON S3C2410_UCON_DEFAULT | S3C2410_UCON_UCLK
@@ -92,6 +98,25 @@ static struct s3c2410_uartcfg h1940_uartcfgs[] = {
}
};
/* Board control latch control */
static unsigned int latch_state = H1940_LATCH_DEFAULT;
void h1940_latch_control(unsigned int clear, unsigned int set)
{
unsigned long flags;
local_irq_save(flags);
latch_state &= ~clear;
latch_state |= set;
__raw_writel(latch_state, H1940_LATCH);
local_irq_restore(flags);
}
EXPORT_SYMBOL_GPL(h1940_latch_control);
/**

View File

@@ -0,0 +1,45 @@
/* linux/arch/arm/mach-s3c2410/gpio.c
*
* Copyright (c) 2006 Lucas Correia Villa Real <lucasvr@gobolinux.org>
*
* S3C2400 GPIO support
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Changelog
* 15-Jan-2006 LCVR Splitted from gpio.c, adding support for the S3C2400
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <asm/hardware.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/arch/regs-gpio.h>
int s3c2400_gpio_getirq(unsigned int pin)
{
if (pin < S3C2410_GPE0 || pin > S3C2400_GPE7_EINT7)
return -1; /* not valid interrupts */
return (pin - S3C2410_GPE0) + IRQ_EINT0;
}
EXPORT_SYMBOL(s3c2400_gpio_getirq);

View File

@@ -0,0 +1,31 @@
/* arch/arm/mach-s3c2410/s3c2400.h
*
* Copyright (c) 2004 Simtec Electronics
* Ben Dooks <ben@simtec.co.uk>
*
* Header file for S3C2400 cpu support
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Modifications:
* 09-Fev-2006 LCVR First version, based on s3c2410.h
*/
#ifdef CONFIG_CPU_S3C2400
extern int s3c2400_init(void);
extern void s3c2400_map_io(struct map_desc *mach_desc, int size);
extern void s3c2400_init_uarts(struct s3c2410_uartcfg *cfg, int no);
extern void s3c2400_init_clocks(int xtal);
#else
#define s3c2400_init_clocks NULL
#define s3c2400_init_uarts NULL
#define s3c2400_map_io NULL
#define s3c2400_init NULL
#endif

View File

@@ -0,0 +1,93 @@
/* linux/arch/arm/mach-s3c2410/gpio.c
*
* Copyright (c) 2004-2006 Simtec Electronics
* Ben Dooks <ben@simtec.co.uk>
*
* S3C2410 GPIO support
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Changelog
* 15-Jan-2006 LCVR Splitted from gpio.c
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <asm/hardware.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/arch/regs-gpio.h>
int s3c2410_gpio_irqfilter(unsigned int pin, unsigned int on,
unsigned int config)
{
void __iomem *reg = S3C2410_EINFLT0;
unsigned long flags;
unsigned long val;
if (pin < S3C2410_GPG8 || pin > S3C2410_GPG15)
return -1;
config &= 0xff;
pin -= S3C2410_GPG8_EINT16;
reg += pin & ~3;
local_irq_save(flags);
/* update filter width and clock source */
val = __raw_readl(reg);
val &= ~(0xff << ((pin & 3) * 8));
val |= config << ((pin & 3) * 8);
__raw_writel(val, reg);
/* update filter enable */
val = __raw_readl(S3C2410_EXTINT2);
val &= ~(1 << ((pin * 4) + 3));
val |= on << ((pin * 4) + 3);
__raw_writel(val, S3C2410_EXTINT2);
local_irq_restore(flags);
return 0;
}
EXPORT_SYMBOL(s3c2410_gpio_irqfilter);
int s3c2410_gpio_getirq(unsigned int pin)
{
if (pin < S3C2410_GPF0 || pin > S3C2410_GPG15_EINT23)
return -1; /* not valid interrupts */
if (pin < S3C2410_GPG0 && pin > S3C2410_GPF7)
return -1; /* not valid pin */
if (pin < S3C2410_GPF4)
return (pin - S3C2410_GPF0) + IRQ_EINT0;
if (pin < S3C2410_GPG0)
return (pin - S3C2410_GPF4) + IRQ_EINT4;
return (pin - S3C2410_GPG0) + IRQ_EINT8;
}
EXPORT_SYMBOL(s3c2410_gpio_getirq);

View File

@@ -72,7 +72,7 @@ ENTRY(s3c2410_cpu_suspend)
@@ prepare cpu to sleep
ldr r4, =S3C2410_REFRESH
ldr r5, =S3C2410_MISCCR
ldr r5, =S3C24XX_MISCCR
ldr r6, =S3C2410_CLKCON
ldr r7, [ r4 ] @ get REFRESH (and ensure in TLB)
ldr r8, [ r5 ] @ get MISCCR (and ensure in TLB)

View File

@@ -240,6 +240,14 @@ int __init pci_versatile_setup(int nr, struct pci_sys_data *sys)
int i;
int myslot = -1;
unsigned long val;
void __iomem *local_pci_cfg_base;
val = __raw_readl(SYS_PCICTL);
if (!(val & 1)) {
printk("Not plugged into PCI backplane!\n");
ret = -EIO;
goto out;
}
if (nr == 0) {
sys->mem_offset = 0;
@@ -253,48 +261,45 @@ int __init pci_versatile_setup(int nr, struct pci_sys_data *sys)
goto out;
}
__raw_writel(VERSATILE_PCI_MEM_BASE0 >> 28,PCI_IMAP0);
__raw_writel(VERSATILE_PCI_MEM_BASE1 >> 28,PCI_IMAP1);
__raw_writel(VERSATILE_PCI_MEM_BASE2 >> 28,PCI_IMAP2);
__raw_writel(1, SYS_PCICTL);
val = __raw_readl(SYS_PCICTL);
if (!(val & 1)) {
printk("Not plugged into PCI backplane!\n");
ret = -EIO;
goto out;
}
/*
* We need to discover the PCI core first to configure itself
* before the main PCI probing is performed
*/
for (i=0; i<32; i++) {
for (i=0; i<32; i++)
if ((__raw_readl(VERSATILE_PCI_VIRT_BASE+(i<<11)+DEVICE_ID_OFFSET) == VP_PCI_DEVICE_ID) &&
(__raw_readl(VERSATILE_PCI_VIRT_BASE+(i<<11)+CLASS_ID_OFFSET) == VP_PCI_CLASS_ID)) {
myslot = i;
__raw_writel(myslot, PCI_SELFID);
val = __raw_readl(VERSATILE_PCI_CFG_VIRT_BASE+(myslot<<11)+CSR_OFFSET);
val |= (1<<2);
__raw_writel(val, VERSATILE_PCI_CFG_VIRT_BASE+(myslot<<11)+CSR_OFFSET);
break;
}
}
if (myslot == -1) {
printk("Cannot find PCI core!\n");
ret = -EIO;
} else {
printk("PCI core found (slot %d)\n",myslot);
/* Do not to map Versatile FPGA PCI device
into memory space as we are short of
mappable memory */
pci_slot_ignore |= (1 << myslot);
ret = 1;
goto out;
}
printk("PCI core found (slot %d)\n",myslot);
__raw_writel(myslot, PCI_SELFID);
local_pci_cfg_base = (void *) VERSATILE_PCI_CFG_VIRT_BASE + (myslot << 11);
val = __raw_readl(local_pci_cfg_base + CSR_OFFSET);
val |= PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_INVALIDATE;
__raw_writel(val, local_pci_cfg_base + CSR_OFFSET);
/*
* Configure the PCI inbound memory windows to be 1:1 mapped to SDRAM
*/
__raw_writel(PHYS_OFFSET, local_pci_cfg_base + PCI_BASE_ADDRESS_0);
__raw_writel(PHYS_OFFSET, local_pci_cfg_base + PCI_BASE_ADDRESS_1);
__raw_writel(PHYS_OFFSET, local_pci_cfg_base + PCI_BASE_ADDRESS_2);
/*
* Do not to map Versatile FPGA PCI device into memory space
*/
pci_slot_ignore |= (1 << myslot);
ret = 1;
out:
return ret;
}
@@ -305,18 +310,18 @@ struct pci_bus *pci_versatile_scan_bus(int nr, struct pci_sys_data *sys)
return pci_scan_bus(sys->busnr, &pci_versatile_ops, sys);
}
/*
* V3_LB_BASE? - local bus address
* V3_LB_MAP? - pci bus address
*/
void __init pci_versatile_preinit(void)
{
}
__raw_writel(VERSATILE_PCI_MEM_BASE0 >> 28, PCI_IMAP0);
__raw_writel(VERSATILE_PCI_MEM_BASE1 >> 28, PCI_IMAP1);
__raw_writel(VERSATILE_PCI_MEM_BASE2 >> 28, PCI_IMAP2);
void __init pci_versatile_postinit(void)
{
}
__raw_writel(PHYS_OFFSET >> 28, PCI_SMAP0);
__raw_writel(PHYS_OFFSET >> 28, PCI_SMAP1);
__raw_writel(PHYS_OFFSET >> 28, PCI_SMAP2);
__raw_writel(1, SYS_PCICTL);
}
/*
* map the specified device/slot/pin to an IRQ. Different backplanes may need to modify this.
@@ -326,16 +331,15 @@ static int __init versatile_map_irq(struct pci_dev *dev, u8 slot, u8 pin)
int irq;
int devslot = PCI_SLOT(dev->devfn);
/* slot, pin, irq
24 1 27
25 1 28 untested
26 1 29
27 1 30 untested
*/
/* slot, pin, irq
* 24 1 27
* 25 1 28
* 26 1 29
* 27 1 30
*/
irq = 27 + ((slot + pin - 1) & 3);
irq = 27 + ((slot + pin + 2) % 3); /* Fudged */
printk("map irq: slot %d, pin %d, devslot %d, irq: %d\n",slot,pin,devslot,irq);
printk("PCI map irq: slot %d, pin %d, devslot %d, irq: %d\n",slot,pin,devslot,irq);
return irq;
}
@@ -347,7 +351,6 @@ static struct hw_pci versatile_pci __initdata = {
.setup = pci_versatile_setup,
.scan = pci_versatile_scan_bus,
.preinit = pci_versatile_preinit,
.postinit = pci_versatile_postinit,
};
static int __init versatile_pci_init(void)

Some files were not shown because too many files have changed in this diff Show More